
A Computing Procedure for Quantification Theory*

~RTIiN D~_v~s

Rensselaer Polytechnic Institute, Hartford Division, East Windsor Hill, Conn.

AND

HILARY PUTNAM'

Princeton University, Princeton, New Jersey

The hope that mathematical methods employed in the investigation of formal
logic would lead to purely computational methods for obtaining mathematical
theorems goes back to Leibniz and has been revived by Peano around the turn
of the century and by Hilbert's school in the 1920%. Hilbert, noting that all of
classical mathematics could be formalized within quantification theory, declared
that the problem of finding an algorithm for determining whether or not a given
formula of quantification theory is valid was the central problem of mathe-
matical logic. And indeed, at one time it seemed as if investigations of this "de-
cision" problem were on the verge of success. However, it was shown by Church
and by Turing that such an algorithm can not exist. This result led to consider-
able pessimism regarding the possibility of using modern digital computers in
deciding significant mathematical questions. However, recently there has been
a revival of interest in the whole question. Specifically, it has been realized that
while no decision procedure exists for quantification theory there are many proof
procedures available--that is, uniform procedures which will ultimately locate
a proof for any formulai of quantification theory which is valid but which will
usually involve seeking "forever" in the Case of a formula which is not valid--
and that some of these proof procedures could well turn out to be feasible for
use with modern computing machinery.

Hao Wang [9] and P. C. Gilmore [3] have each produced wor]dng programs
which employ proof procedures in quantification theory. Gilmore's program
employs a form of a basic theorem of mathematical logic due to Herbrand, and
Wang's makes use of a formulation of quantification theory related to those
studied by Gentzen. However, both programs encounter decisive difficulties
with any but the simplest formulas of quantification theory, in connection with
methods of doing propositional calculus. Wang's program, because of its use of
Gentzen-like methods, involves exponentiation on the total number of truth-
functional connectives, whereas Gilmore's program, using normal forms, in-
volves exponentiation on the number of clauses present. Both methods are su-
perior in many cases to truth table methods which involve exponentiation on the

* Received September, 1959. This research was supported by the United States Air
Force through the Air Force Office of Scientific Research of the Air Research and Develop-
ment Command, under Contract No. AF 49(638)-527. Reproduction in whole or in part is
permitted for any purpose of the United States Government.

201

202 M. DAVIS AND H. PUTNAM

total number of variables present, and represent important initial contributions,
but both run into difficulty with some fairly simple examples.

In the present paper, a uniform proof procedure for quantification theory is
given which is feasible for use with some rather complicated formulas and which
does not ordinarily lead to exponentiation. The superiority of the present pro-
cedure over those previously available is indicated in part by the fact that a
formula on which Gilmore's routine for the IBM 704 causes the machine to
compute for 21 minutes without obtaining a result was worked successfully by
hand computation using the present method in 30 minutes. Cf. §6, below.

I t should be mentioned that , before it can be hoped to employ proof procedures
for quantification theory in obtaining proofs of theorems belonging to "genuine"
mathematics, ~nlte axiomatizations, which are "short ," must be obtained for
various branches of mathematics. This last question will not be pursued further
here; cf., however, Davis and Putnam [2], where one solution to this problem is
given for elementary number theory.

1. General Remarks

We shall describe a computational procedure, or algorithm, which when ap-
plied to a logically valid formula written in the notation described below will
terminate and yield a proof Of the validity of tha t formula; for formulas which
are not logically valid, the computation will continue indefinitely without giving
a result :

The symbols of which our formulas are constructed are divided into the classes:
punctuation marks, logical symbols, (individual) variables, predicate symbols,
and function symbols. The punctuation marks are:

, ()

The logical symbols are:

& Y --~ ~-~ E

We shall take as the variables the terms of the following infinite sequence:

x~ x2 xs x4 . . -

T h e predicate symbols will be the letters F, G, H, with or without subscripts,
and the function symbols 2 will be the terms of the infinite sequence:

Among all of the expressions (e.g. ~ V Fx~E) which can be formed using these
symbols, we distinguish three classes: the terms, the atomic formulas, and the
well-formed formulas (abbreviated w.f .f .).

1 Since by results of Church and Turing the set of formulas involved is a recursively
enumerable set which is not recursive (for terminology, and a proof of this fact, of. [1]
or [6]), this kind of algorithm is the best one can hope to obtain.

2 We intend to use function symbols not only to stand for functions of one or more argu-
ments but also for individuals. In the latter use they may be thought of as standing for
functions of zero argument.

A COMPUTING PROCEDURE FOR QUANTIFICATION THEORY 203

The no t ion term will be def ined induc t ive ly :
(1) The expressions f~ and x, are terms for each i = 1, 2, 3,
(2) I f pl , p2 , " " , pn are terms,a then so is f~(pl , p2 , " " , p~), and pl , p2 , " " ,

p,~ are called the arguments of f ~.
(3) The terms consist exactly of the expressions generated by (1) and (2).
Next :
The expression p (p l , p2, " " , pn) is an atomic formula i f p is a predicate

symbol and pl , p2, • • • , pn are terms, pl , p2 , • • • , pn are called the arguments of p.
Final ly:
(1) A n atomic formula is a wJJ.
(2) I f R is a w.f.f . , then so are ,-~R, (x ,) R , and (Ex~)R.

(3) I f R and S are w.f.f . 's, then so are (R & S) , (R Y S) , (R ~ S) , and
(R

We in t roduce the following abbrev ia t ive convent ions :
a s tands for f~.
f s tands for f2.
pq s tands for p(q) if p is a func t ion symbol and q is a te rm.
~ (p l , p2, " '" , pn) s t ands for "-~p(pl , " " , pn), where p is a predica te symbol

and p~, . . • , p~ are te rms.
An occurrence of x~ in a w.f.f. R is a bound occurrence if i t is in a w.f. pa r t o f

R of the form (x ,) P or (E x ,) P . A n occurrence of x, which is no t b o u n d is called
a free occurrence, x , is free in R if i t has a t least one flee occurrence in R.

I f x ~ , x ~ , . - . , x~ are all of t he free variables in R, we somet imes write
R (x ~ , x~2, " " , x,,,) for R. If p l , p2, --" , p~ are te rms , we wri te R (p l , p~,
• . • , p~) for t he resul t of replacing x~ by pk , /c = 1, 2, . . • , n, a t all free oc-
currences of x~k in R.

Paren theses will be o m i t t e d wherever the i r omission can cause no confusion.
Our next s tep is to single ou t f rom t h e class of w.f.f. 's those which are logically

valid. This can be done e i ther by specifying axioms and rules of inference or by
referring to " in t e rp re t a t i ons" of t he w.f.f . 's of t he sys tem, and by a basic result
due to GSdel 4 b o t h of these procedures will lead to t he same class of formulas .
Fo r our present purposes i t is m o s t conven ien t to use the l a t t e r fo rmula t ion em-
ploying " in te rp re ta t ions . "

A n interpretation for a fo rmula R consists of a n o n e m p t y set of e lements U
called a universe and an as s ignment of "va lues" to each func t ion symbol and
predicate symbol as follows:

T o each func t ion symbol which occurs in R wi th n a rguments , 5 we assign a
func t ion of n variables rang ing over U, whose values are in U. e

T o each predica te symbol which occurs in R wi th n a rguments , we assign a

3 Note that the symbols p~, p~, etc. occur here as "syntactic variables." That is, they
stand for expressions made up of our symbols.

4 The GSdel completeness theorem. Cf. [5], [6], or [7].
Thus, if n -- 0,]~ is assigned an element of U.

6 Note that if f~ occurs in R both with m arguments and with n arguments, m ~ n, it is
assigned different functions in each case. In practice this will not happen in examples con-
sidered below. (However, two occurrences in R of f~ with the same number of arguments
are, of course, to be assigned the same value.)

20,~ M. DAVIS A.i~D H. PUTNAM

function of n variables ranging over U, whose values are the t ruth values, 0
(falsehood) and 1 (truth)/

Let R(xnl, x ~ , - . . , xn~) be a w.f.f. Then, given an interpretation of R over
universe U, the value 0 or 1 will be assigned to R(tl , t2, • " • , t~) for each ordered
k-tuplet (tl , h , " ' " , tk) of elements of U. This value may be obtained simply by
interpreting 0 as falsehood and 1 as truth, using the usual t ruth tables for ~ &
y ~ and ¢-~, interpreting (x~)P(x~) as 0 unless P(t) has the value 1 for all

t in U, and interpreting (Ex~)P(x~) as 1 unless P(t) has the value 0 for all t in U.
A w.f.f. R is called valid if under every interpretation and for every set of argu-

ments from U, R is assigned the value 1.
A w.f.f. R is called consistent (or satisfiable) if there is some interpretation

under which R is assigned the value 1, for some choice of arguments from U. R
is inconsistent if it is not consistent.

We shall make use of the obvious fact that :
R is valid if and only if N R is inconsistent.

That is, to "prove" R i t s i l l ices to "refute" ,--~R, and indeed our proof procedure
for validity will be couched in the form of a refutation procedure.

R is called logically equivalent to S if the w.f.f. (R ~ S) is valid.
A w.f.f, is called quantifier-free if it contains no occurrence of (x~) or (Ex~).

A w.f.f, is a prenex formula, or in prenex normal form, if it begins with a sequence
of quantifiers (x~) and (Ex~) in which no variable occurs more than once (called
the prefix) and if the sequence is followed by a quantifier free w.f.f. (called the
matrix). An example of a prenex formula is:

(xl) (Ex3) (xT) (Ex~)r(f(x~), f3(xl , x~), xs)

S is called a prenex normal form of R if S is a prenex formula which is logically
equivalent to R. There is a simple algorithm (cf. [5], [7]), for obtaining a prenex
normal form of a given w.f.f. Thus, for the purpose of our refutation procedure it
su~ces to consider prenex formulas.

The disjunction of R ~ , . . . , R . , n=> 1, is the w.f.f. R~ Y R2 V . . - Y Rn;
their conjunction is the w.f.f. R~ & R2 & . . . & R~. A literal is a w.f.f, which is
either an atomic formula or ~ R , where R is atomic. A clause is a disjunction'
R~ V R~ Y .. • V R, in which each R~ is a literal and in which no atomic formula
occurs twice. (E.g., F(x~) V G(x~, x3) is a clause, but F(xl) V in(x1) is not.)

A conjunction of clauses is said to be a formula in conjunctive normal form.
Ex.~PL~: (p Y q V ~) & (s V t) i s a formula in conjunctive normal form if

p, q, r, s, t are atomic fornmlas.
If a w.f.f. A is in conjunctive normal form and A is logically equivalent to B,

then A is called a conjunctive normal form of B.
EXAMPLE: (p V ~) & (q V p) is a con junc t ive normal form of p ~ q if p and

q are any atomic formulas.
For further discussion of conjunctive normal form the reader may consult

Hilbert and Ackermann [5]. In particular, there is a simple algorithm by which

T The comment in footnote 6 regarding function symbols applies also to predi-
cate symbols.

A COMPUTING PROCEDURE FOR QUANTIFICATION THEORY 205

a conjunctive normal form is obtainable for any quantifier-free formula which is
not valid; ff the formula is valid the same algorithm will establish that fact.
(Cf. [5].) Hence, we may assume that the w.f.f, which is offered for refutation is
a prenex formula whose matrix is in conjunctive normal form. Later we shall see
why this is a useful and practical assumption.

2. Replacement of Existential Quantifiers by Function Symbols

The refutation algorithm to be presented will exploit the following idea (which,
in essence, goes back to Lowenheim) : that existential quantifiers in a prenex
fornmla can be replaced by function symbols without affecting consistency. The
notion may be clarified by an example: Suppose the given prenex formula is

(Ex) (Ex) (Ex)R(xl , x , , (i)

where the matrix R(x~, x2, x3, x4, xs) is supposed to be quantifier-free and to
contain ony the free variables indicated. Then the formula (i) is consistent only
if the formula

(xl) (x,)R(xl , f2(xl), fs(xl), x4 , fs(xl , x4)) (ii)

is, where f2 and f~ are one-place function symbols and f5 is a two-place function
symbol. To verify this, observe that (ii) logically implies (i), so if (i~) is cor/-
sistent, so is (i). On the other hand, if (i) is true in some universe U (under some
interpretation of the predicate letters in R), then there are functionsSf~, f~ and f~
over U such that (ii) is true in U under the same interpretation of the predicate
letters in R. Thus if (i) is consistent, so is (ii).

Throughout the present paper, accordingly, the instruction "replace the
existential quantifiers in F by function symbols" (where F is a prenex formula)
will have the following meaning: Let the variables in the prefix of F (in order of
occurrence) be xl , x : , - - . , xN. Let the existentially quantified variables in the
prefix be x~,, x ~ 2 , ' . . , X~M- Then, (1) the quantifier (Ex~j) (for j = 1, 2,
• . . , M) is to be deleted from the prefix, and (2) each occurrence of x~ i in the
matrix is to be replaced by an occurrence of the term f~i(xq~, xq2 i " ' " , Xq,
where (xq,), (xq,), . . . , (xq~) are all the universal quantifiers that precede (Ex~i)
in the prefix of F.

In the above example, following the instruction "replace the existential quanti-
tiers in (i) by function symbols," as just explained, would lead to formula (ii).
Finally, (recalling that 0-place function symbols are interpreted simply as in-
dividual constants) replacing the existential quantifiers by function symbols in

(Ezl) (Ex3) (x4)M(zl, x4)

s This agreement tac i t ly employs a nonconstruct ive principle known as the Axiom of
Choice. AJte~natively, one can use the theorem t h a t if (i) is consistent then (i) has a true
interpretat ion in some denumerable universe U (Skolem-LSwenheim theorem; cf. [7], pp.
253-260), and then explicitly define the functions f2, f~ and f5 in terms of some fixed ordering
of the elements of U.

206 M. DAVIS AND H. PUTNAM

would lead to the formula

z,).

3. The Sequence of Quantifier-Free Lines

The way our whole refutation-algorithm will "look" may now be indicated in
a general way. Suppose the given formula is

,

where R is quantifier-free and contains only the indicated variables. Then the
first step will be to replace the existential quantifier(s) by function s)~nbols,
which will lead in this case to

(xl) , z3)

(recall tha t "f" abbreviates f~. and that "a" abbreviates fl). Next we will form a
sequence of quantifier-free lines as follow (certain parentheses are omitted for
brevity) :

R(a, fa, a)
R(a, fa, fa)
R(fa, ffa, a)
R(fa, ffa, fa)
R(a, fa, ffa)

(Observe tha t the variables xl , x3 are re-
placed in all possible ways with terms
from the sequence a, fa, ffa,) (1)

• As these quantifier-free lines are generated, we will test the conjunction of the
first n lines (for n = 1, 2, 3, • . .) for consistency (by methods described in the
next section). If the conjunction of the first n lines is inconsistent, for any n, then
the formula (xl)(x3)R(xl, f(xl) , x~) is inconsistent (since it implies all of the
quantifier free lines), and hence the given formula was inconsistent. On the other
hand, if the conjunctive of the first n lines is consistent for every n, then the al-
gorithm never terminates, and the given formula was consistent. 9

We now state the general rule for forming the sequence of quantifier-free lines.
Let F be the given formula after the existential quantifiers have been replaced b y
function symbols. Let f~l, " " , rim be all the funct ion symbols in F, and let
f~k be an nk-place function symbol (for k = 1, 2, . . . , M). Let D be the follow-
ing set: the smallest set containing the individual constant a and having the
property that whenever it contains t~, . . . ,tnk then it contains the expression
f~k(tl, ". . , t.k), for k = 1, 2, . . . , M. Let L be the number of universal quanti-
tiers in F, and let S be the sequence of all ordered L-tuplets of members of D,

9 For the proof of this s t a t emen t see [7], pp. 253-260. The key point in the proof is t ha t
an infinite set of quantif ier-free formulas is inconsis tent if and only if some finite subset is
inconsistent.

COMPUTING PROCEDURE FOR QUANTIFICA.TION THEORY 207

in lexicographic order) ° Then the n th quantifier free lfiae (for n = 1, 2, 3, . - .)
is the result of subst i tut ing ~ t~ for the first universal ly quantified variable (in
F) , t,2 for the second universal ly quantified variable, -- . , t,L for the L th uni-
versally quantified variable, where t,,1 ; . - " ; t,L is the n th L-tuplet in the se-
quence S.

REMARKS :
(A) One may, if one desires, abbreviate the expressions in the set D by num-

bers according to some convenient scheme. If one adopted this policy, the quanti-
tier-free lines (1) above might look like this:

R(1, 2, 1)
R(1, 2, 2)
R(2, 3, 1)
R(2, 3, 2)
R(1, 2, 3)

(2)

Such a scheme of numerical abbreviat ion is extremely worthwhile from the
s tandpoint of hand computat ion (because i'~ cuts down the length of the formu-
las). On the other hand, there m a y be lit t le or no advantage to adopt ing such a
scheme if the algorithm is going to be programmed for a computer.

(B) Ins tead of test ing the conjunction of the first n quantifier-free lines for
consistency when n = 1, 2, 3, . - - , one might test " in te rmi t t en t ly , " e.g., when
n = 10, 20, 30, The relat ive advantages and disadvantages of such "inter-
m i t t en t " applications of the test ing for consistency should be invest igated if the
algorithm we are describing is to be ac tual ly programmed for a computer.

4. Feasible Methods in the Propositional Calculus

The idea of a refutat ion-algori thm, of the sort described in general terms in
the preceding section, is not new. In essence, i t goes back to Herbrand 1~, and
formulations of the kind we have given (based on the idea of generat ing a se-
quence of quantifier-free lines, and then tes t ing the conjunct ion of the first n lines
for consistency as n = 1, 2, 3, ---) have been previously given by Quine u, Gil-
more u, and others. However, the crucial difficulty, to which tit t le a t tent ion ap-

a0 For the purposes of defining "lexicographic order," subscripts are to be thought of as
if they were written on the line (e.g., f~(a) is to be treated as if it were "fl2(a)"). Then
our alphabet consists of the symbols: () f 0 1 2 3 4 5 6 7 8 9, ; (the latter symbol being used
to separate the members of an L-tuplet thus: "J2(fl);f6(fl,f2(fl))"), and the "lexico-
graphic ordering" of the L-tuplets is the ordering in which they are arranged like words
in a dictionary.

n As indicated in the example, a universal quantifier is deleted whenever something is
substituted for the variable it contains. This sort of "substitution" is technically known as
universal instantiation (cf. [7], p. 147).

12 Cf. [4] .
u Cf. [8].
1~ Cf. [3].

208 ~ . DAVIS AND H. PUTNAM

pears to have been given in this connection, is that of finding a feasible technique
for testing the conjunction of the first n lines for consistency when n is large.
Quine's "uniform proof procedure" is described with hand computation in
mind, and thus Quine limits himself to truth-tables as a method in the proposi-
tional calculus. However, the number of lines in a truth table, when k proposi-
tional variables are involved, is 2 k and so truth-tables quickly become unfeasible
for our purposes. Gilmore's procedure is to put the conjunction of the first n
lines into disjunctive normal form, but this too leads to exponentiation (on the
number of clauses in the matrix of the given formula), and so this method too is
unfeasible in general (although fortuitous cancellations may keep the formulas
involved down to manageable length in special cases). Still another procedure
has been proposed by Wang in [9]. Wang's procedure is less easy to compare with
ours because it does not use prenex normal form; however his routine employs
a "Gentzentype" formal system in which proofs have a "tree" structure 15 (as
opposed to the usual "linear" structure) with "branching" possible at any line.
As far as the propositional calculus is concerned, the difficulty with Wang's
technique is that the number of branches tends to increase exponentially with
the number of logical connectives involved. Thus, none of the three methods
just described--truth-tables, disjunctive normal forms, or Gentzen-type sys-
t ems- i s satisfactory as a method for testing the conjunction of the first n lines
(in our sequence of quantifier-free lines) for truth-functional consistency when n
becomes at all large (e.g., n > 10).

By contrast, the method to be described always terminates in at most 2 (R - 1)
steps, where R is the number of variables (i.e., the number of steps increases
linearly, not exponentially, in the number of variables). Moreover, the process
will rarely lead to formulas which are much more complicated than those with
which one started in examples of the sort likely to arise in practice. Actually it
has been found possible to work quite complicated formulas by this method
even by hand computation.

The method to be described depends on putting the conjunction of the first n
lines into conjunctive normal form. Since putting a formula into conjunctive
normal form does not of itself enable one to tell whether or not the formula is
consistent, it is necessary to make one or two remarks explaining our choice
of this normal form. Briefly, the reasons are as follows: although normal forms
may in certain cases be used as decision-methods (e.g., putting a formula into
disjunctive normal form automatically reveals whether or not the formula is
inconsistentlY), they have also another function, as the term "normal form"
indicates, namely, their use serves to regularize formulas and to cut down struc-
tural complexity. For instance, every formula F in conjunctive normal form has
the structure A & B & R where A is the conjunction of the clauses containing a
given atomic formula (say, p), B is the conjunction of the clauses containing the
negation of that formula (say, ~), and R is the conjunction of the remaining
clauses. Moreover, it can be shown that F is inconsistent if and only if A' & R

~s F o r an e x p l a n a t i o n of " t r e e s t r u c t u r e " cf. [6], p p . 106--107.
xn Cf. [7], pp . 52-59.

A COMPUTING PROCEDURE FOR QUANTIFICATION THEORY 209

and B' & R are both inconsistent, where A' is obtained from A by deleting occur-
rences of p, and B' is obtained from B by deleting occurrences of p. Such regulari-
ties are hardly to be hoped for in the case of arbitrary formulas not in normal
form.

Our problem, as indicated above, is how to deal with cases in which the number
of quantifier-free lines is too large to make it feasible to put the whole system of
lines into disjunctive normal form. In such cases there is one normal form we can
use: namely, the conjunctive normal form.

That the conjunctive normal form can be employed follows from the remark
that to put a whole system of formulas into conjunctive normal form we have
only to put the individual formulas into conjunctive normal form. Thus, even if
a system has hundreds or thousands of formulas, it can be put into conjunctive
normal form "piece by piece", without any "multiplying out." This is a feasible
(if laborious) task even for hand computation: thus no specialization is intro-
duced here beyond supposing that the individual formulas in the system are
"manageable" (i.e., short enough to be put into conjunctive normal form by
hand) and that the whole system can be written down by a human being.

In the case of our "sequences of quantifier-free lines" (generated according to
the rule in the preceding section), the situation is even more pleasant than in the
general case of testing some "big" system of formulas for consistency: namely,
it suffices to put the matrix of the given formula (after the existential quantifiers
have been replaced by function symbols) into conjunctive normal form, and
then the "quantifier-free lines" will be automatically generated in conjunctive
normal form !

In stating our method for testing the conjunction of the first n "quantifier-free
lines" for consistency, we shall assume that the matrix of the given formula was
in conjunctive normal form (so that the conjunction of the first n lines will like-
wise automatically be in conjunctive normal form), and we shall speak of the
entire conjunction as a single formula F.

Our method consists of the following three rules, in which p, q, r, s are atomic
formulas:

I. Rule for the Elimination of One-Literal Clauses:
(a) If a formula F in conjunctive normal form contains an atomic formula p

as a one-literal clause and also contains p as a one-literal clause, then F may be
replaced by 0. (I.e., F is self-contradictory).

(b) If case (a) does not apply, and if an atomic formula p appears as a clause
in a formula F in conjunctive normal form, then one may modify F by striking
out all clauses that contain p affir_matively 17 and deleting all occurrences of
from the remaining clauses, thus obtaining a formula F' which is inconsistent if
and only if F is.

(c) If case (a) does not apply and/~ appears as a clause in a formula F in con-
junctive normal form, then one may modify F by striking out all clauses that con-

17 An occur rence of p w i t h o u t a n e g a t i o n b a r is ca l led a n affirmative occur rence ; one w i t h
a n e g a t i o n b a r is ca l led a negative occur rence .

210 M. DAVIS AND H. PUTNAM

tain ~ and deleting all occurrences of p from the remaining clauses, again obtain-
ing a formula F' which is inconsistent if and only if F is.

(d) In cases (b) and (e), if F ' i s emp ty , then/7, is consistent.
t

II. Affirmative-Negative Rule. If an atomic formula p occurs in a formula F in
conjunctive normal form only affirmatively, or if p occurs only negatively, then
all clauses which contain p may be deleted. The resulting formula F ' is incon-
sistent if and only if F is. (If F ' is empty, then F is consistent).

III . Rule for Eliminating Atomic Formulas. Let the given formula be put into
the form (A V p) & (B V ~) & R where A, B, and R are free of p. (This can
be done simply by grouping together the clauses containing p and "factoring out"
occurrences of p to obtain A, grouping the clauses containing i~ and "factoring
out" i~ to obtain B, and grouping the remaining clauses to obtain R.) Then F
is inconsistent if and only if (A V B) & R is inconsistent.

Justifization. For Rule I: The justification of case (a) of the rule is obvious.
For case (b), let the formula F be p & A. Then F is clearly false when p = 0; .
hence F is inconsistent, provided F is false when p = 1. Substituting 1 for p in F
and simplifying has the following effect: All clauses that contain p affirmatively
reduce to 1 and may be deleted. All clauses that contain p negatively reduce to 0
(in case the whole clause was i~) or to 0 V B, where B is the remainder of the
clause. But there cannot be any clauses which consist of just ~ (otherwise case
(a) would apply) ; and 0 ¥ B = B. Hence the effect of substituting i for p in F
and simplifying is to strike out all the clauses that contain p affirmatively and
delete all occurrences of i~ from the remaining clauses. Thus

F' is inconsistent ~ F is false whenever p = 1

F is inconsistent.

Case (c) is symmetrical to case (b). Case (d) reduces to the observation that
if p occurs in every clause, then F = 1 when p = 1.

For Rule I I : Let p occur in F only affirmatively, and let F be A ~& R where
A is the conjunction of all the clauses containing p. Then if F is inconsistent, F
is false when p = 1. But when p = 1 we have A = 1, and therefore (A & R) (-~ R
when p = 1. Hence, if F is inconsistent, so is R. But, since (A & R) --~ R, if R
is inconsistent, so is (A & R). (If R is empty, F = 1 when p = 1, and therefore
F is consistent.) The argument is similar when p occurs only negatively, using
p = 0 instead of p = 1.

For Rule I I I : F is inconsistent if and-only if F is false when p = 0 and false
when p = 1. But in the first case, F reduces to (A & R) and in the second case
to (B & R) . So F is inconsistent if and only if (A & R) and (B & R) a r e both
inconsistent, and (A & R) V (B & R) ~ (A V B) & R.

Examples. (1) Consider the formula:

(p v q

There are two one-literal clauses. Elimination of these leads immediately t o
q & q = O .

A COMPUTIN'G PROCEDURE FOR QUANTIFICATION THEORY 211
J

(2) Consider the formula

(p v v qv).

Elimination of the one-literal clause yields p & (~ V f), which in turn yields f.
By Rule I or Rule II, this formula is consistent.

(3) The formula

contains r only negatively. By Rule II, it is inconsistent if and only if (p V ~) &
(p ¥ q) is. By Rule I I I (eliminating p), this is inconsistent if and only if q V q
is. But q V ~ = 1, so this is consistent.

(4) The following example is worked using only Rule III . (Note that it is
necessary to put the formula back into conjunctive normal form after each
elimination).

(p v r) & (p r)
v r)

(s V r) & (~ V F) & (s Y F) & (~ V r) (p eliminated)

s & ~ (r eliminated)

To complete the refutation, it suffices to note that s & ~ is inconsistent by Rule I.

5. The Complete Algorithm

In the Preceding sections we have stated the various rules which make up our
refutation-algorithm. I t remains to "put the pieces together." The following is
the complete sequence of steps to be followed in employing the algorithm (we
adopt the policy of alluding to rules which have been completely stated in earlier
sections of this paper, rather than restating them in full; also we assume the
given formula to be prenex, and to have a matrix in conjunctive normal form) :

Step 1. Generate one more quantifier-free line (if none have previously been
generated, this means: generate a first quantifier-fl-ee line). Then test the con-
junction of all the so-far-generated quantifier-free lines for consistency by the
following steps:

Step 2. Apply the rule for eliminating one-literal clauses (Rule I) to the cob-
]unction obtained at step 1 if it contains any one-literal clauses, and continue
• applying this rule until the resulting formula has'no one-literal clauses. If the_
empty formula results, the conjunction obtained at step 1 was consistent. If a
formula results which is inconsistent by Rule I, the conjunction obtained at step
1 was inconsistent. If a nonempty formula with no one-literal clauses results, go
on to- -

Step 3. Apply the affirmative-negative rule (Rule I I) to the formula obtained
at step 2 (or to the conjunction obtained at step 1, if step 2 did not apply) unless
that formula had the prop.erty that every atomic formula that occurred in it oc-
curred both affirmatively and negatively. Then go back to step 2 if the result

• contains any one-literal clauses. Otherwise, repeat step 3 if the result contained

212 M. DAVIS AND H. PUTNAM

some literal which occurred only affirmatively or only negatively If the result is
the empty formula, the conjunction obtained at step 1 was consistent. If a non-
empty formula with no one-hteral clauses and with the property that every
atomic formula that occurs in it occurs both affirmatively and negatively results,
go on t o - -

Step 4. Using Rule III , eliminate the first atomic formula from the first clause
of minimal length in the formula that has resulted from the preceding steps (or
from the conjunction obtained at step 1, if steps 2 and 3 did not apply). If the
resulting formula cannot be put back into conjunctive normal form (because
every clause would contain an atomic formula both negated and not-negated),
the conjunction obtained at step 1 was consistent. Otherwise, put the resulting
formula back into conjunctive normal form, and go back to step 2.

Continue in this way (i.e.; going through the "cycle" steps 2-3-4) until either
(a) it has been decided at some application of steps 2, 3, or 4 tha t the conjunc-
tion obtained at step 1 was consistent; or (b) it has been decided that the con-
junction obtained at step 1 was inconsistent. (This can only happen at an appli-
cation of step 2.)

If it is decided that the conjunction obtained at step 1 was inconsistent, then
the algorithm terminates, and the given formula was inconsistent (i.e., "refuta-
t ion" has been accomplished); If it is decided that the conjunction obtained at
the preceding application of step 1 was consistent, go back to step 1, and con-
tinue.

6. An Example

P. C. Gilmore is tested his refutation-procedure on a number of formulas, in-
cluding the following one:

(Ex)(Ey)(z){(F(x, y) --~ (F(y, z) & F(z, z))) & ((F(x, y) & G(x, y))
(1)

- (G(x, z) & a(z, z)))}

We have selected this example for purposes of comparison because (a) it is'
not so long as to make hand computation immediately impractical (e.g., i t is
already in prenex form, and the matrix can easily be put into conjunctive normal
form); yet (b) Gilmore's procedure did not lead to a refutation although an i B M
704 was employed for 21 minutes.

Our procedure, on the other hand, did lead to a refutation in under a hal.f-hour
of hand computation! For the purposes of hand computation, one modification
was made in the algorithm: instead of testing the conjunction of the first n-lines
for consistency when n -- 1, 2, 3, -- •, we adopted the scheme of " intermit tent"
testing alluded to at the end of section 3, and tested at n -- 10, 20, 30. The con-
junction of the first n lines was consistent when n = 10 and n -- 20 and incon-
sistent when n = 30. Inspection later revealed that the smallest n for which the
conjunction of the first n lines was inconsistent was n = 25. That the difficulty

18 Cf . [3].

-~ COMPUTING PROCEDURE FOR QUA.NTIFICATION THEORY ~i~

with Gilmore's procedure lies in the propositional calculus method employed is
confirmed by the fact that in the 21 minutes the IBM 704 was running, only 7
"substitutions" were made; only what amomats 'to 7 quantifier-free lines were
generated. We adopt the abbreviation, here and below, of omitting the symbol V,
writing, e.g.,

l~(y, z)l~(z, z)G(x, y) for (F(y, z) Y F(z, z) V G(x, y)).

The following is the negation of formula (1) with matrix ifi conjunctive normal
form:

(z)(y)(Ez)(F(x, y) & l~(y, z)l~(z, z)G(x, y)
(2)

& :(y, z):(z, z)O(x, z)O(z, z))
Replacing the existential quantifier by a function symbol gives:

(x)(y)[F(x, y) & I~(y, f(z, y))Ff(f(x, y), f(x, y))G(x, y)
(3)

& 1~(y, f(x, y))I~(f(z, y), f(x, y))G(x,](z, y))G(f(z, y), f(x, y))].

In writing the first 25 quantifier-free fines generated we have used numbers
up to 25 instead of "f(a, a)", '~(f(a, a), a)", etc, in order to make the formulas
shorter and the over-all pattern more clear. Also we have omitted parentheses
between predicate symbols and their arguments. The lines are as follows:

1.'Fa, a &Ira, 1 P1,1
2. Fl, a &Pa, 2 i02,2
3. F1, I & R1, 3 R3,3
4. Fa, I & R1, 4 P4,4
5. Fa, 2 &R2,5 P5,5
6. Fa, 3 &P3,6 P6,6
7. Fa, 4 &P4,7 P7,7
8. F1, 2 & P2, 8 R8,8
9. F1 ,3&R3,9 P9,9

10. F1, 4 & RR4, 10 P10
11. F2, a &RRa, l l RRll
12. F2, 1 & Pl, 12 P12
13. F2, 2 & R2, 13 R13
14. F2, 3 & R3, 14 P14
15. F2, 4 & R4, 15 R15
16. F3, a & Pa, 16 ~16
17. F3,1&RRl, 17 /~17
18. F3,2 &P2, 18 P18,
19. F3,3 &~3,19 R19,
20. F3, 4 & P4, 20 R20,
21. F4, a &Pa, 21 P21,
22. F4,1 &P1,22 R22,
23. F4~ 2 & P2, 23 R23,
24. F4,3 &R3,24 R24,
25. F4,4&R4,25 R25,

Quantifier-Free Lines:

Ga, a&Pa, 1 RI, 1 0a, 1 Gi, 1
Gl, a&Pa, 2 RR2,2 G1,2 02,2
G1, 1 & F1,3 F3, 3 G1,3 G3,3
Ga, l& i01 ,4 P4,4 Ga, 4 04,4
Ga:2&R2,5 R5,5 Ga, 5. 05,5
Ga, 3&R3,6 R6,6 0a, 6 06,6
Ga, 4&l$4,7 P7,7 Ga, 7 07,7
G1,2&F2,8 F8,8 01,8 08,8
G1,3&P3,9 R9,9 01,9 09,9

10 G1,4 &RR4,10 R10,10 01,10 010, 10
11 G2, a &Pa, l l Rl1,11 02, 11 011, 11
12 02,1 &Pl , 12 P12,12 02, 12 012, 12
13 02,2 &R2,13 R13,13 02, 13 013, 13
14 02,3&P3,]4 P14, i4 02, 14. 014, 14
15 02,4 &P4,15 R15,15 02, 15 015, 15
16 G3, a &Ra, 16 RR16,16 03, 16 G16,16
17 03, 1 &Rl, 17 R17,17 03, 17 017, 17
18 03,2 &R2, 18 R18, 18 03, 18 018, 18
19 03,3 &P3,19 P19, 19 03, 19 019, 19
20 G3,4&P4,20 R20,20 03,20 020,20
21 q4, a &Pa, 21 P21,21 04, 21 021, 21
22 04, 1 &R1,22 RR22,22 04,22 022, 22
23 04,2 &R2,23 RR23,23 04, 23 023, 23
24 04 ,3&~3 ,24 i024,24 04,24 024,24
25 04,4 &R4,25 R25,25 ~4,25 025,25

214 i~. DAVIS AND It. pUTNAM

Applying our "one-literal clause rule,"

G1
G1
Ga
P2
"23 6
P 4 7
P2, 8
'23, 9
'24, 10
Ra, 11
R1, 12
P2, 13
'23, 14
'24 15
Ra 16
Pl 17
P2 18
P3 19
'2420
Ra 21
R1 22
R2 23
R3 24
R4 25

a & G a , 1
a &G1,2
I &G1,3
1 &Ga, 4
5 P5,5

R6, 6
~7, 7
"28,8
'29,9
'210,
'211,
P12,
'213,
'214,
'215,
P16,
F17,
R18,
~19,
P20,
P21,
P22,
R23,
R24,
P25,

#1, 1 &
#2, 2 &
3 , 3 &
(~4, 4 &

Ga, 2 & P2, 5
Ga, 3 &R3,6
Ga, 4 & R4, 7
ql , 2 & P2, 8
G1, 3 & RR3, 9

10 G1 4 &P4 ,10
11 G2 a & P a , 11
12 G2 1 &P1,12
13 G2 2 &P2,13
14 G2 3 &P3,14
15 G2 4 &R4,15
16 G3 a & Pa, 16
17 G3, 1 & Pl, 17
18 G3, 2 & P2, 18
19 G3, 3 & P3, 19
20 G3, 4 & P4, 20
21 G4, a & Fa, 21
22 G4, 1 & R1, 22
23 CG4, 2 & "22, 23
24 G4, 3 & "23, 24
25 G4, 4 & '24, 25

P5, 5
R6, 6
'27, 7
PS, 8
RR9,9

Ga, 5
~a, 6
~a, 7
~1, 8
~1, 9

R10, 10
Rll, 11
P12, 12
P13, 13
RR14, 14
PlS, 15
R16, 16
R17 17
R18 18
R19 19
R20 20
F21 21
P22 22
P23 23
'224 24
"225 25

we obtain:

5 , 5 &
G6,6&
~7, 7 &
GS, 8&
9 , 9 &

01, 1o #1o, 1o &
~2~11 #11, 11 &
G2,12 #12, 12 &
~2,13 ~13,13 &
#2,14 #14, 14 &
02, 15 ~15, 15 &
#3, 16 G16,16 &
G3, 17 G17, 17 &
~3, 18 #18, 18 &
G3,19 G19, 19 &
#3,2o #2o, 2o &
G4,21 G21,21 &
~4,22 #22, 22 &
G4,23 G23,23 &
#4,24 #24, 24 &
G4, 25 #25, 25.

Now applying the one-literal clause rule again to eliminate Ga, a, G1, a, and
G1, 1 yields a formula containing Ga, 1 and Ga, 1 as clauses, which is inconsistent
by Rule I.

The reader may be interested to see how the method works when the conjunc-
tion of quantifier-free lines being tested is not truth-functionally inconsistent. To
illustrate this, let us test the conjunction of the first 10 quantifier-free lines listed
above for consistency. Applying the one-literal clause rule yields:

1. [Ga, a &]#a, 1 Gi, 1
2. R2,2 Gi, a & P 2 , 2 01,2 03,3
3. R3,3 Gi, I & R 3 , 3 01,3 #4,4
4. RR4~4 Ga, l & ' 2 4 , 4 #a, 4 #5,5
6.1
7. ISam e as in above list of "quantifier free
8. twit h first clause omitted. - lines" except
9. l

10. J

A second application of the one-literal clause rule deletes the clause "Ga, a"
(which was bracketted above in anticipation of this deletion). Now all the
clauses containing an atomic formula beginning "F" can be deleted by the affirm-
ative-negative rule, and we obtain Ga, 1 Y (~1, 1, which reduces to the empty
formula by one more application of the affirmative-negative rule. Thus the con-
junction of the first 10 quantifier-free lines was consistent. A similar result is ob-
tained on testing the result of the first 20 quantifier-free lines.

A COMPUTING PROCEDURE FOR QUANTIFICATION THEORY 215

NOTE ADDED IN PROOF: The "affirmative-negative rule" has also been em-
ployed, independently of our work, for testing propositional-calculus formulas by
B. Dunham, R. Fridshal, and G. L. Sward: "A non.heuristic program for proving
elementary logical theorems," Proceedings of the First International Conference on
Informagon Processing, Paris, 1959.

To the list of reports of working proof procedure programs should be added:
Dag Prawitz, Hakan Prawitz, and Neri Vogera, "A mechanical proof procedure
and its realization in an electronic computer," J. Assoc. Comput. Mach., 7 (1960),
102-128.

R E F E R E N C E S "

1. MAI~TIN DAVIS, Computability and Unsolvability, New York, Toronto, and London,
McGraw-Hill, 1958, xxv ~ 210 pp.

2. MANTIS DAvis AND HILARY PVTNAM, A finitely axiomatizable system for elementary
number theory. Submitted to Vhe Journal o] Symbolic Logic.

3. PAUL C. GILMOre, A proof method for quantification theory. IBM J. Research Dev. 4
(1960), 28--35.

4. JAcQues HEaBa~D, Recherches sur la thcorie de la demonstration. Travaux de la Societe
des Sciences et des Lettres de Varsovie, Classe III science mathematiques et physiques,
no. 33, 128 pp.

5. DAVID HILBERT AND WILHELM ACKERM.4.NN, Principles of Mathemabical Logic. New York,
Chelsea, 1950, xii --k 172 pp.

6. ST~PH~ C. KZ~NE, Introduction to Metamathematics. New York and Toronto, D. Van
Nostrand, 1952, x ~ 550 pp.

7. WIL~Ai~ V. O. Q~rxNEi- Methods of Logic. New York, Henry Holt, revised 1959, xx W 272
PP.

8. WILL.~D V. O. Qtrr~rE, A proof procedure for quantification theory. J. Symbolic Logic
B0 (1955), 141-149.

9. HAo WANG, Towards mechanical mathematics. IBM J. Research Dev. 4 (1960) 2-22.

