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The hope that mathematical methods employed in the investigation of formal 
logic would lead to purely computational methods for obtaining mathematical 
theorems goes back to Leibniz and has been revived by Peano around the turn 
of the century and by Hilbert's school in the 1920%. Hilbert, noting that all of 
classical mathematics could be formalized within quantification theory, declared 
that the problem of finding an algorithm for determining whether or not a given 
formula of quantification theory is valid was the central problem of mathe- 
matical logic. And indeed, at one time it seemed as if investigations of this "de- 
cision" problem were on the verge of success. However, it was shown by Church 
and by Turing that such an algorithm can not exist. This result led to consider- 
able pessimism regarding the possibility of using modern digital computers in 
deciding significant mathematical questions. However, recently there has been 
a revival of interest in the whole question. Specifically, it has been realized that 
while no decision procedure exists for quantification theory there are many proof 
procedures available--that is, uniform procedures which will ultimately locate 
a proof for any formulai of quantification theory which is valid but which will 
usually involve seeking "forever" in the Case of a formula which is not valid-- 
and that some of these proof procedures could well turn out to be feasible for 
use with modern computing machinery. 

Hao Wang [9] and P. C. Gilmore [3] have each produced wor]dng programs 
which employ proof procedures in quantification theory. Gilmore's program 
employs a form of a basic theorem of mathematical logic due to Herbrand, and 
Wang's makes use of a formulation of quantification theory related to those 
studied by Gentzen. However, both programs encounter decisive difficulties 
with any but the simplest formulas of quantification theory, in connection with 
methods of doing propositional calculus. Wang's program, because of its use of 
Gentzen-like methods, involves exponentiation on the total number of truth- 
functional connectives, whereas Gilmore's program, using normal forms, in- 
volves exponentiation on the number of clauses present. Both methods are su- 
perior in many cases to truth table methods which involve exponentiation on the 
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total number of variables present, and represent important initial contributions, 
but both run into difficulty with some fairly simple examples. 

In the present paper, a uniform proof procedure for quantification theory is 
given which is feasible for use with some rather complicated formulas and which 
does not ordinarily lead to exponentiation. The superiority of the present pro- 
cedure over those previously available is indicated in part  by the fact that  a 
formula on which Gilmore's routine for the IBM 704 causes the machine to 
compute for 21 minutes without obtaining a result was worked successfully by 
hand computation using the present method in 30 minutes. Cf. §6, below. 

I t  should be mentioned that ,  before it  can be hoped to employ proof procedures 
for quantification theory in obtaining proofs of theorems belonging to "genuine" 
mathematics, ~nlte axiomatizations, which are "short ,"  must be obtained for 
various branches of mathematics. This last question will not be pursued further 
here; cf., however, Davis and Putnam [2], where one solution to this problem is 
given for elementary number theory. 

1. General Remarks 

We shall describe a computational procedure, or algorithm, which when ap- 
plied to a logically valid formula written in the notation described below will 
terminate and yield a proof Of the validity of tha t  formula; for formulas which 
are not logically valid, the computation will continue indefinitely without giving 
a result :  

The symbols of which our formulas are constructed are divided into the classes: 
punctuation marks, logical symbols, (individual) variables, predicate symbols, 
and function symbols. The punctuation marks are: 

, ( ) 

The logical symbols are: 

& Y --~ ~-~ E 

We shall take as the variables the terms of the following infinite sequence: 

x~ x2 xs x4 . . -  

T h e  predicate symbols will be the letters F, G, H, with or without subscripts, 
and the function symbols 2 will be the terms of the infinite sequence: 

Among all of the expressions (e.g. ~ V Fx~E) which can be formed using these 
symbols, we distinguish three classes: the terms, the atomic formulas, and the 
well-formed formulas (abbreviated w.f .f . ). 

1 Since by results of Church and Turing the set of formulas involved is a recursively 
enumerable set which is not recursive (for terminology, and a proof of this fact, of. [1] 
or [6]), this kind of algorithm is the best one can hope to obtain. 

2 We intend to use function symbols not only to stand for functions of one or more argu- 
ments but also for individuals. In the latter use they may be thought of as standing for 
functions of zero argument. 
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The  no t ion  term will be def ined induc t ive ly :  
(1) The expressions f~ and x,  are terms for  each i = 1, 2, 3, . . . .  
(2) I f  pl , p2 , " "  , pn are terms,a then so is f~(pl  , p2 , " "  , p~), and pl , p2 , " "  , 

p,~ are called the arguments of f ~. 
(3) The terms consist exactly of the expressions generated by (1) and (2).  
Next :  
The expression p ( p l ,  p2,  " "  , pn) is an atomic formula  i f  p is a predicate 

symbol and pl , p2, • • • , pn are terms, pl , p2 , • • • , pn are called the arguments of p. 
Final ly:  
(1)  A n  atomic formula  is a wJJ. 
(2) I f  R is a w.f.f . ,  then so are ,-~R, ( x , ) R ,  and (Ex~)R.  

(3) I f  R and S are w.f.f . 's,  then so are ( R  & S ) ,  ( R  Y S ) ,  ( R  ~ S ) ,  and 
(R 

We in t roduce  the  following abbrev ia t ive  convent ions :  
a s tands  for f~. 
f s tands  for f2.  
pq s tands  for p(q)  if p is a func t ion  symbol  and  q is a te rm.  
~ ( p l ,  p2,  " '"  , pn) s t ands  for "-~p(pl ,  " "  , pn), where p is a predica te  symbol  

and  p~, . .  • , p~ are te rms.  
An  occurrence of x~ in a w.f.f. R is a bound occurrence if i t  is in a w.f. pa r t  o f  

R of the  form ( x , ) P  or ( E x , ) P .  A n  occurrence  of x, which  is no t  b o u n d  is called 
a free occurrence, x ,  is free in R if i t  has  a t  least  one flee occurrence in R. 

I f  x ~ ,  x ~ ,  . - . ,  x~ are all of t he  free variables in R, we somet imes  write  
R ( x ~ ,  x~2, " "  , x,,,) for R.  If  p l ,  p2,  --" , p~ are te rms ,  we wri te  R ( p l ,  p~, 
• . • , p~) for t he  resul t  of replacing x~ by  pk ,  /c = 1, 2, . .  • , n, a t  all free oc- 
currences of x~k in R. 

Paren theses  will be o m i t t e d  wherever  the i r  omission can cause no confusion.  
Our  next  s tep  is to  single ou t  f rom t h e  class of w.f.f. 's those  which are logically 

valid. This  can be done  e i ther  by  specifying axioms and  rules of inference or by  
referring to  " in t e rp re t a t i ons"  of t he  w.f.f . 's  of t he  sys tem,  and  by  a basic result  
due  to  GSdel 4 b o t h  of these  procedures  will lead to t he  same class of formulas .  
Fo r  our present  purposes  i t  is m o s t  conven ien t  to  use the  l a t t e r  fo rmula t ion  em- 
ploying " in te rp re ta t ions . "  

A n  interpretation for a fo rmula  R consists of a n o n e m p t y  set of e lements  U 
called a universe and  an  as s ignment  of "va lues"  to  each func t ion  symbol  and  
predicate  symbol  as follows: 

T o  each func t ion  symbol  which  occurs in R wi th  n a rguments ,  5 we assign a 
func t ion  of n variables  rang ing  over  U, whose values  are in U. e 

T o  each predica te  symbol  which  occurs in R wi th  n a rguments ,  we assign a 

3 Note that  the symbols p~, p~, etc. occur here as "syntactic variables." That is, they 
stand for expressions made up of our symbols. 

4 The GSdel completeness theorem. Cf. [5], [6], or [7]. 
Thus, if n -- 0, ]~ is assigned an element of U. 

6 Note that if f~ occurs in R both with m arguments and with n arguments, m ~ n, it  is 
assigned different functions in each case. In practice this will not happen in examples con- 
sidered below. (However, two occurrences in R of f~ with the same number of arguments 
are, of course, to be assigned the same value.) 
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function of n variables ranging over U, whose values are the t ruth values, 0 
(falsehood) and 1 (truth)/ 

Let R(xnl, x ~ ,  - . .  , xn~) be a w.f.f. Then, given an interpretation of R over 
universe U, the value 0 or 1 will be assigned to R(tl ,  t2, • " • , t~) for each ordered 
k-tuplet (tl ,  h ,  " ' " ,  tk) of elements of U. This value may be obtained simply by 
interpreting 0 as falsehood and 1 as truth, using the usual t ruth tables for ~ & 
y ~ and ¢-~, interpreting (x~)P(x~) as 0 unless P( t )  has the value 1 for all 

t in U, and interpreting (Ex~)P(x~) as 1 unless P( t )  has the value 0 for all t in U. 
A w.f.f. R is called valid if under every interpretation and for every set of argu- 

ments from U, R is assigned the value 1. 
A w.f.f. R is called consistent (or satisfiable) if there is some interpretation 

under which R is assigned the value 1, for some choice of arguments from U. R 
is inconsistent if it is not consistent. 

We shall make use of the obvious fact that :  
R is valid if and only if N R  is inconsistent. 

That  is, to "prove" R i t  s i l l  ices to "refute" ,--~R, and indeed our proof procedure 
for validity will be couched in the form of a refutation procedure. 

R is called logically equivalent to S if the w.f.f. (R ~ S) is valid. 
A w.f.f, is called quantifier-free if it  contains no occurrence of (x~) or (Ex~). 

A w.f.f, is a prenex formula, or in prenex normal form, if it begins with a sequence 
of quantifiers (x~) and (Ex~) in which no variable occurs more than once (called 
the prefix) and if the sequence is followed by a quantifier free w.f.f. (called the 
matrix). An example of a prenex formula is: 

(xl) (Ex3) (xT) (Ex~)r(f(x~), f3(xl , x~), xs) 

S is called a prenex normal form of R if S is a prenex formula which is logically 
equivalent to R. There is a simple algorithm (cf. [5], [7]), for obtaining a prenex 
normal form of a given w.f.f. Thus, for the purpose of our refutation procedure it 
su~ces to consider prenex formulas. 

The disjunction of R ~ , . . . , R . ,  n=> 1, is the w.f.f. R~ Y R2 V . . -  Y Rn; 
their conjunction is the w.f.f. R~ & R2 & . . .  & R~. A literal is a w.f.f, which is 
either an atomic formula or ~ R ,  where R is atomic. A clause is a disjunction' 
R~ V R~ Y .. • V R,  in which each R~ is a literal and in which no atomic formula 
occurs twice. (E.g., F(x~) V G(x~, x3) is a clause, but F(xl) V in(x1) is not.) 

A conjunction of clauses is said to be a formula in conjunctive normal form. 
Ex.~PL~: (p Y q V ~) & (s V t ) i s  a formula in conjunctive normal form if 

p, q, r, s, t are atomic fornmlas. 
If a w.f.f. A is in conjunctive normal form and A is logically equivalent to B, 

then A is called a conjunctive normal form of B. 
EXAMPLE: (p  V ~) & (q V p)  is a con junc t ive  normal  form of p ~ q if p and 

q are any atomic formulas. 
For further discussion of conjunctive normal form the reader may consult 

Hilbert and Ackermann [5]. In particular, there is a simple algorithm by which 

T The comment in footnote 6 regarding function symbols applies also to predi- 
cate symbols. 
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a conjunctive normal form is obtainable for any quantifier-free formula which is 
not valid; ff the formula is valid the same algorithm will establish that  fact. 
(Cf. [5].) Hence, we may assume that  the w.f.f, which is offered for refutation is 
a prenex formula whose matrix is in conjunctive normal form. Later we shall see 
why this is a useful and practical assumption. 

2. Replacement of Existential Quantifiers by Function Symbols 

The refutation algorithm to be presented will exploit the following idea (which,  
in essence, goes back to Lowenheim) : that  existential quantifiers in a prenex 
fornmla can be replaced by function symbols without affecting consistency. The 
notion may be clarified by an example: Suppose the given prenex formula is 

(Ex ) (Ex ) (Ex )R(xl , x , ,  (i) 

where the matrix R(x~, x2, x3, x4, xs) is supposed to be quantifier-free and to 
contain ony the free variables indicated. Then the formula (i) is consistent only 
if the formula 

(xl) (x,)R(xl , f2(xl), fs(xl), x4 , fs(xl , x4) ) (ii) 

is, where f2 and f~ are one-place function symbols and f5 is a two-place function 
symbol. To verify this, observe that  (ii) logically implies (i), so if (i~) is cor/- 
sistent, so is (i). On the other hand, if (i) is true in some universe U (under some 
interpretation of the predicate letters in R),  then there are functionsSf~, f~ and f~ 
over U such that  (ii) is true in U under the same interpretation of the predicate 
letters in R. Thus if (i) is consistent, so is (ii). 

Throughout the present paper, accordingly, the instruction "replace the 
existential quantifiers in F by function symbols" (where F is a prenex formula) 
will have the following meaning: Let the variables in the prefix of F (in order of 
occurrence) be xl ,  x : ,  - - .  , xN. Let the existentially quantified variables in the 
prefix be x~,, x ~ 2 , ' . . ,  X~M- Then, (1) the quantifier (Ex~j) (for j = 1, 2, 
• . .  , M) is to be deleted from the prefix, and (2) each occurrence of x~ i in the 
matrix is to be replaced by an occurrence of the term f~i(xq~, xq2 i " ' "  , Xq, 
where (xq,), (xq,), . . .  , (xq~) are all the universal quantifiers that  precede (Ex~i) 
in the prefix of F. 

In the above example, following the instruction "replace the existential quanti- 
tiers in (i) by function symbols," as just explained, would lead to formula (ii). 
Finally, (recalling that  0-place function symbols are interpreted simply as in- 
dividual constants) replacing the existential quantifiers by function symbols in 

(Ezl) (Ex3) (x4)M(zl, x4) 

s This agreement tac i t ly  employs a nonconstruct ive principle known as the Axiom of 
Choice. AJte~natively, one can use the  theorem t h a t  if (i) is consistent then  (i) has a true 
interpretat ion in some denumerable universe U (Skolem-LSwenheim theorem; cf. [7], pp. 
253-260), and then explicitly define the functions f2, f~ and f5 in terms of some fixed ordering 
of the elements of U. 
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would lead to the formula 

z,). 

3. The Sequence of Quantifier-Free Lines 

The way our whole refutation-algorithm will "look" may now be indicated in 
a general way. Suppose the given formula is 

, 

where R is quantifier-free and contains only the indicated variables. Then the 
first step will be to replace the existential quantifier(s) by function s)~nbols, 
which will lead in this case to 

(xl) , z3) 

(recall tha t  "f" abbreviates f~. and that  "a" abbreviates fl).  Next we will form a 
sequence of quantifier-free lines as follow (certain parentheses are omitted for 
brevity) : 

R(a, fa, a) 
R(a, fa, fa) 
R(fa, ffa, a) 
R(fa,  ffa, fa)  
R(a, fa, ffa) 

(Observe tha t  the variables xl ,  x3 are re- 
placed in all possible ways with terms 
from the sequence a, fa, ffa, . . . . )  (1) 

• As these quantifier-free lines are generated, we will test the conjunction of the 
first n lines (for n = 1, 2, 3, • . .  ) for consistency (by methods described in the 
next section). If the conjunction of the first n lines is inconsistent, for any n, then 
the formula (xl)(x3)R(xl, f(xl) ,  x~) is inconsistent (since it implies all of the 
quantifier free lines), and hence the given formula was inconsistent. On the other 
hand, if the conjunctive of the first n lines is consistent for every n, then the al- 
gorithm never terminates, and the given formula was consistent. 9 

We now state the general rule for forming the sequence of quantifier-free lines. 
Let F be the given formula after the existential quantifiers have been replaced b y  
function symbols. Let f~l, " " ,  rim be all the funct ion  symbols in F, and let 
f~k be an nk-place function symbol (for k = 1, 2, . . .  , M).  Let D be the follow- 
ing set: the smallest set containing the individual constant a and having the 
property that  whenever it contains t~, . . .  ,tnk then it contains the expression 
f~k(tl, ". .  , t.k), for k = 1, 2, . . .  , M. Let L be the number of universal quanti- 
tiers in F, and let S be the sequence of all ordered L-tuplets of members of D, 

9 For  the proof of this s t a t emen t  see [7], pp. 253-260. The  key point  in the proof is t ha t  
an infinite set of quantif ier-free formulas is inconsis tent  if and only if some finite subset is 
inconsistent.  
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in lexicographic order)  ° Then  the n th  quantifier free lfiae (for n = 1, 2, 3, . - .  ) 
is the  result of subst i tut ing ~ t~ for the first universal ly quantified variable (in 
F) ,  t,2 for the  second universal ly quantified variable, -- .  , t,L for the L th  uni- 
versally quantified variable, where t,,1 ; . - "  ; t,L is the  n th  L-tuplet  in the se- 
quence S. 

REMARKS : 
(A) One may,  if one desires, abbreviate  the  expressions in the  set D by num- 

bers according to some convenient  scheme. If one adopted this  policy, the quanti-  
tier-free lines (1) above might  look like this:  

R(1,  2, 1) 
R(1,  2, 2) 
R(2, 3, 1) 
R(2,  3, 2) 
R(1,  2, 3) 

(2) 

Such a scheme of numerical  abbreviat ion is extremely worthwhile from the 
s tandpoint  of hand computat ion (because i'~ cuts down the length of the  formu- 
las). On the other hand,  there m a y  be lit t le or no advantage  to  adopt ing such a 
scheme if the algorithm is going to  be programmed for a computer.  

(B) Ins tead of test ing the  conjunction of the  first n quantifier-free lines for 
consistency when n = 1, 2, 3, . - -  , one might  test  " in te rmi t t en t ly , "  e.g., when 
n = 10, 20, 30, . . . .  The  relat ive advantages  and  disadvantages  of such "inter-  
m i t t en t "  applications of the  test ing for consistency should be invest igated if the 
algorithm we are describing is to be ac tual ly  programmed for a computer.  

4. Feasible Methods in the Propositional Calculus 

The  idea of a refutat ion-algori thm, of the  sort described in general terms in 
the preceding section, is not  new. In  essence, i t  goes back to Herbrand  1~, and 
formulations of the  kind we have given (based on the  idea of generat ing a se- 
quence of quantifier-free lines, and  then  tes t ing the conjunct ion of the  first n lines 
for consistency as n = 1, 2, 3, ---  ) have been previously given by Quine u, Gil- 
more u, and others. However,  the  crucial difficulty, to which tit t le a t tent ion  ap- 

a0 For the purposes of defining "lexicographic order," subscripts are to be thought of as 
if they were written on the line (e.g., f~(a) is to be treated as if it were "fl2(a)"). Then 
our alphabet consists of the symbols: ( ) f 0  1 2 3 4 5 6 7 8 9, ; (the latter symbol being used 
to separate the members of an L-tuplet thus: "J2(fl);f6(fl,f2(fl))"), and the "lexico- 
graphic ordering" of the L-tuplets is the ordering in which they are arranged like words 
in a dictionary. 

n As indicated in the example, a universal quantifier is deleted whenever something is 
substituted for the variable it contains. This sort of "substitution" is technically known as 
universal instantiation (cf. [7], p. 147). 

12 Cf. [4] .  
u Cf. [8]. 
1~ Cf. [3]. 
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pears to have been given in this connection, is that of finding a feasible technique 
for testing the conjunction of the first n lines for consistency when n is large. 
Quine's "uniform proof procedure" is described with hand computation in 
mind, and thus Quine limits himself to truth-tables as a method in the proposi- 
tional calculus. However, the number of lines in a truth table, when k proposi- 
tional variables are involved, is 2 k and so truth-tables quickly become unfeasible 
for our purposes. Gilmore's procedure is to put the conjunction of the first n 
lines into disjunctive normal form, but this too leads to exponentiation (on the 
number of clauses in the matrix of the given formula), and so this method too is 
unfeasible in general (although fortuitous cancellations may keep the formulas 
involved down to manageable length in special cases). Still another procedure 
has been proposed by Wang in [9]. Wang's procedure is less easy to compare with 
ours because it does not use prenex normal form; however his routine employs 
a "Gentzentype" formal system in which proofs have a "tree" structure 15 (as 
opposed to the usual "linear" structure) with "branching" possible at any line. 
As far as the propositional calculus is concerned, the difficulty with Wang's 
technique is that the number of branches tends to increase exponentially with 
the number of logical connectives involved. Thus, none of the three methods 
just described--truth-tables, disjunctive normal forms, or Gentzen-type sys- 
t ems- i s  satisfactory as a method for testing the conjunction of the first n lines 
(in our sequence of quantifier-free lines) for truth-functional consistency when n 
becomes at all large (e.g., n > 10). 

By contrast, the method to be described always terminates in at most 2 ( R - 1 )  
steps, where R is the number of variables (i.e., the number of steps increases 
linearly, not exponentially, in the number of variables). Moreover, the process 
will rarely lead to formulas which are much more complicated than those with 
which one started in examples of the sort likely to arise in practice. Actually it 
has been found possible to work quite complicated formulas by this method 
even by hand computation. 

The method to be described depends on putting the conjunction of the first n 
lines into conjunctive normal form. Since putting a formula into conjunctive 
normal form does not of itself enable one to tell whether or not the formula is 
consistent, it is necessary to make one or two remarks explaining our choice 
of this normal form. Briefly, the reasons are as follows: although normal forms 
may in certain cases be used as decision-methods (e.g., putting a formula into 
disjunctive normal form automatically reveals whether or not the formula is 
inconsistentlY), they have also another function, as the  term "normal form" 
indicates, namely, their use serves to regularize formulas and to cut down struc- 
tural complexity. For instance, every formula F in conjunctive normal form has 
the structure A & B & R where A is the conjunction of the clauses containing a 
given atomic formula (say, p), B is the conjunction of the clauses containing the 
negation of that formula (say, ~), and R is the conjunction of the remaining 
clauses. Moreover, it can be shown that F is inconsistent if and only if A' & R 

~s F o r  an  e x p l a n a t i o n  of " t r e e  s t r u c t u r e "  cf. [6], p p .  106--107. 
xn Cf. [7], pp .  52-59. 
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and B' & R are both inconsistent, where A' is obtained from A by deleting occur- 
rences of p, and B' is obtained from B by deleting occurrences of p. Such regulari- 
ties are hardly to be hoped for in the case of arbitrary formulas not in normal 
form. 

Our problem, as indicated above, is how to deal with cases in which the number 
of quantifier-free lines is too large to make it feasible to put the whole system of 
lines into disjunctive normal form. In such cases there is one normal form we can 
use: namely, the conjunctive normal form. 

That the conjunctive normal form can be employed follows from the remark 
that to put a whole system of formulas into conjunctive normal form we have 
only to put the individual formulas into conjunctive normal form. Thus, even if 
a system has hundreds or thousands of formulas, it can be put into conjunctive 
normal form "piece by piece", without any "multiplying out." This is a feasible 
(if laborious) task even for hand computation: thus no specialization is intro- 
duced here beyond supposing that the individual formulas in the system are 
"manageable" (i.e., short enough to be put into conjunctive normal form by 
hand) and that the whole system can be written down by a human being. 

In the case of our "sequences of quantifier-free lines" (generated according to 
the rule in the preceding section), the situation is even more pleasant than in the 
general case of testing some "big" system of formulas for consistency: namely, 
it suffices to put the matrix of the given formula (after the existential quantifiers 
have been replaced by function symbols) into conjunctive normal form, and 
then the "quantifier-free lines" will be automatically generated in conjunctive 
normal form ! 

In stating our method for testing the conjunction of the first n "quantifier-free 
lines" for consistency, we shall assume that the matrix of the given formula was 
in conjunctive normal form (so that the conjunction of the first n lines will like- 
wise automatically be in conjunctive normal form), and we shall speak of the 
entire conjunction as a single formula F. 

Our method consists of the following three rules, in which p, q, r, s are atomic 
formulas: 

I. Rule for the Elimination of One-Literal Clauses: 
(a) If a formula F in conjunctive normal form contains an atomic formula p 

as a one-literal clause and also contains p as a one-literal clause, then F may be 
replaced by 0. (I.e., F is self-contradictory). 

(b) If case (a) does not apply, and if an atomic formula p appears as a clause 
in a formula F in conjunctive normal form, then one may modify F by striking 
out all clauses that contain p affir_matively 17 and deleting all occurrences of 
from the remaining clauses, thus obtaining a formula F' which is inconsistent if 
and only if F is. 

(c) If case (a) does not apply and/~ appears as a clause in a formula F in con- 
junctive normal form, then one may modify F by striking out all clauses that con- 

17 An  occur rence  of p w i t h o u t  a n e g a t i o n  b a r  is ca l led a n  affirmative occur rence ;  one  w i t h  
a n e g a t i o n  b a r  is ca l led  a negative occur rence .  
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tain ~ and deleting all occurrences of p from the remaining clauses, again obtain- 
ing a formula F'  which is inconsistent if and only if F is. 

(d) In cases (b) and (e), if F '  i s emp ty  , then/7, is consistent. 
t 

II. Affirmative-Negative Rule. If an atomic formula p occurs in a formula F in 
conjunctive normal form only affirmatively, or if p occurs only negatively, then 
all clauses which contain p may be deleted. The resulting formula F '  is incon- 
sistent if and only if F is. (If F '  is empty, then F is consistent). 

III .  Rule for Eliminating Atomic Formulas. Let the given formula be put into 
the form (A V p) & (B V ~) & R where A, B, and R are free of p. (This can 
be done simply by grouping together the clauses containing p and "factoring out" 
occurrences of p to obtain A, grouping the clauses containing i~ and "factoring 
out" i~ to obtain B, and grouping the remaining clauses to obtain R.) Then F 
is inconsistent if and only if (A V B) & R is inconsistent. 

Justifization. For Rule I:  The justification of case (a) of the rule is obvious. 
For case (b), let the formula F be p & A. Then F is clearly false when p = 0; . 
hence F is inconsistent, provided F is false when p = 1. Substituting 1 for p in F 
and simplifying has the following effect: All clauses that  contain p affirmatively 
reduce to 1 and may be deleted. All clauses that  contain p negatively reduce to 0 
(in case the whole clause was i~) or to 0 V B, where B is the remainder of the 
clause. But there cannot be any clauses which consist of just ~ (otherwise case 
(a) would apply) ; and 0 ¥ B = B. Hence the effect of substituting i for p in F 
and simplifying is to strike out all the clauses that  contain p affirmatively and 
delete all occurrences of i~ from the remaining clauses. Thus 

F' is inconsistent ~ F is false whenever p = 1 

F is inconsistent. 

Case (c) is symmetrical to case (b). Case (d) reduces to the observation that  
if p occurs in every clause, then F = 1 when p = 1. 

For Rule I I :  Let p occur in F only affirmatively, and let F be A ~& R where 
A is the conjunction of all the clauses containing p. Then if F is inconsistent, F 
is false when p = 1. But when p = 1 we have A = 1, and therefore (A & R) (-~ R 
when p = 1. Hence, if F is inconsistent, so is R. But, since (A & R) --~ R, if R 
is inconsistent, so is (A & R). (If R is empty, F = 1 when p = 1, and therefore 
F is consistent.) The argument is similar when p occurs only negatively, using 
p = 0 instead of p = 1. 

For Rule I I I :  F is inconsistent if and-only if F is false when p = 0 and false 
when p = 1. But in the first case, F reduces to (A & R) and in the second case 
to (B & R) .  So F is inconsistent if and only if (A & R) and (B & R ) a r e  both 
inconsistent, and (A & R) V (B & R) ~ (A V B) & R. 

Examples. (1) Consider the formula: 

(p v q 

There are two one-literal clauses. Elimination of these leads immediately t o  
q & q = O .  
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(2) Consider the formula 

(p v v qv ). 

Elimination of the one-literal clause yields p & (~ V f), which in turn yields f. 
By Rule I or Rule II,  this formula is consistent. 

(3) The formula 

contains r only negatively. By Rule II,  it is inconsistent if and only if (p V ~) & 
(p ¥ q) is. By Rule I I I  (eliminating p), this is inconsistent if and only if q V q 
is. But q V ~ = 1, so this is consistent. 

(4) The following example is worked using only Rule III .  (Note that  it is 
necessary to put the formula back into conjunctive normal form after each 
elimination). 

( p v r ) & ( p  r) 
v r )  

(s V r) & (~ V F) & (s Y F) & (~ V r) (p eliminated) 

s & ~ (r eliminated) 

To complete the refutation, it suffices to note that s & ~ is inconsistent by Rule I. 

5. The Complete Algorithm 

In the Preceding sections we have stated the various rules which make up our 
refutation-algorithm. I t  remains to "put the pieces together." The following is 
the complete sequence of steps to be followed in employing the algorithm (we 
adopt the policy of alluding to rules which have been completely stated in earlier 
sections of this paper, rather than restating them in full; also we assume the 
given formula to be prenex, and to have a matrix in conjunctive normal form) : 

Step 1. Generate one more quantifier-free line (if none have previously been 
generated, this means: generate a first quantifier-fl-ee line). Then test the con- 
junction of all the so-far-generated quantifier-free lines for consistency by the 
following steps: 

Step 2. Apply the rule for eliminating one-literal clauses (Rule I )  to the cob- 
]unction obtained at step 1 if it contains any one-literal clauses, and continue 
• applying this rule until the resulting formula has'no one-literal clauses. If the_ 
empty formula results, the conjunction obtained at step 1 was consistent. If a 
formula results which is inconsistent by Rule I, the conjunction obtained at step 
1 was inconsistent. If a nonempty formula with no one-literal clauses results, go 
on to- -  

Step 3. Apply the affirmative-negative rule (Rule I I )  to the formula obtained 
at step 2 (or to the conjunction obtained at step 1, if step 2 did not apply) unless 
that formula had the prop.erty that every atomic formula that occurred in it oc- 
curred both affirmatively and negatively. Then go back to step 2 if the result 

• contains any one-literal clauses. Otherwise, repeat step 3 if the result contained 
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some literal which occurred only affirmatively or only negatively If the result is 
the empty formula, the conjunction obtained at  step 1 was consistent. If a non- 
empty formula with no one-hteral clauses and with the property that  every 
atomic formula that  occurs in it occurs both affirmatively and negatively results, 
go on t o - -  

Step 4. Using Rule III ,  eliminate the first atomic formula from the first clause 
of minimal length in the formula that  has resulted from the preceding steps (or 
from the conjunction obtained at step 1, if steps 2 and 3 did not apply). If the 
resulting formula cannot be put back into conjunctive normal form (because 
every clause would contain an atomic formula both negated and not-negated), 
the conjunction obtained at step 1 was consistent. Otherwise, put the resulting 
formula back into conjunctive normal form, and go back to step 2. 

Continue in this way (i.e.; going through the "cycle" steps 2-3-4) until either 
(a) it has been decided at some application of steps 2, 3, or 4 tha t  the conjunc- 
tion obtained at  step 1 was consistent; or (b) it  has been decided that  the con- 
junction obtained at step 1 was inconsistent. (This can only happen at an appli- 
cation of step 2.) 

If it is decided that  the conjunction obtained at  step 1 was inconsistent, then 
the algorithm terminates, and the given formula was inconsistent (i.e., "refuta- 
t ion" has been accomplished); If it  is decided that  the conjunction obtained at  
the preceding application of step 1 was consistent, go back to step 1, and con- 
tinue. 

6. An Example 

P. C. Gilmore is tested his refutation-procedure on a number of formulas, in- 
cluding the following one: 

(Ex)(Ey)(z){(F(x, y) --~ (F(y, z) & F(z, z))) & ((F(x, y) & G(x, y)) 
(1) 

- (G(x, z) & a(z, z)))} 

We have selected this example for purposes of comparison because (a) it is' 
not so long as to make hand computation immediately impractical (e.g., i t  is 
already in prenex form, and the matrix can easily be put into conjunctive normal 
form); yet (b) Gilmore's procedure did not lead to a refutation although an i B M  
704 was employed for 21 minutes. 

Our procedure, on the other hand, did lead to a refutation in under a hal.f-hour 
of hand computation! For the purposes of hand computation, one modification 
was made in the algorithm: instead of testing the conjunction of the first n-lines 
for consistency when n -- 1, 2, 3, -- •, we adopted the scheme of " intermit tent"  
testing alluded to at  the end of section 3, and tested at n -- 10, 20, 30. The con- 
junction of the first n lines was consistent when n = 10 and n -- 20 and incon- 
sistent when n = 30. Inspection later revealed that  the smallest n for which the 
conjunction of the first n lines was inconsistent was n = 25. That  the difficulty 

18 Cf .  [3]. 
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with Gilmore's procedure lies in the propositional calculus method employed is 
confirmed by the fact that in the 21 minutes the IBM 704 was running, only 7 
"substitutions" were made; only what amomats 'to 7 quantifier-free lines were 
generated. We adopt the abbreviation, here and below, of omitting the symbol V, 
writing, e.g., 

l~(y, z)l~(z, z)G(x, y) for (F(y, z) Y F(z, z) V G(x, y)). 

The following is the negation of formula (1) with matrix ifi conjunctive normal 
form: 

(z)(y)(Ez)(F(x, y) & l~(y, z)l~(z, z)G(x, y) 
(2) 

& :(y, z):(z, z)O(x, z)O(z, z)) 
Replacing the existential quantifier by a function symbol gives: 

(x)(y)[F(x, y) & I~(y, f(z, y) )Ff(f(x, y), f(x, y) )G(x, y) 
(3) 

& 1~(y, f(x, y) )I~(f(z, y), f(x, y) )G(x, ](z, y))G(f(z, y), f(x, y) )]. 

In writing the first 25 quantifier-free fines generated we have used numbers 
up to 25 instead of "f(a, a)", '~(f(a, a), a)", etc, in order to make the formulas 
shorter and the over-all pattern more clear. Also we have omitted parentheses 
between predicate symbols and their arguments. The lines are as follows: 

1.'Fa, a &Ira, 1 P1,1 
2. Fl, a &Pa, 2 i02,2 
3. F1, I & R1, 3 R3,3 
4. Fa, I & R1, 4 P4,4 
5. Fa, 2 &R2,5 P5,5 
6. Fa, 3 &P3,6 P6,6 
7. Fa, 4 &P4,7 P7,7 
8. F1, 2 & P2, 8 R8,8 
9. F1 ,3&R3,9  P9,9 

10. F1, 4 & RR4, 10 P10 
11. F2, a &RRa, l l  RRll 
12. F2, 1 & Pl, 12 P12 
13. F2, 2 & R2, 13 R13 
14. F2, 3 & R3, 14 P14 
15. F2, 4 & R4, 15 R15 
16. F3, a & Pa, 16 ~16 
17. F3,1&RRl, 17 /~17 
18. F3,2 &P2, 18 P18, 
19. F3,3 &~3,19 R19, 
20. F3, 4 & P4, 20 R20, 
21. F4, a &Pa, 21 P21, 
22. F4,1 &P1,22 R22, 
23. F4~ 2 & P2, 23 R23, 
24. F4,3 &R3,24 R24, 
25. F4,4&R4,25 R25, 

Quantifier-Free Lines: 

Ga, a&Pa, 1 RI, 1 0a, 1 Gi, 1 
Gl, a&Pa,  2 RR2,2 G1,2 02,2 
G1, 1 & F1,3 F3, 3 G1,3 G3,3 
Ga, l& i01 ,4  P4,4 Ga, 4 04,4 
Ga:2&R2,5 R5,5 Ga, 5. 05,5 
Ga, 3&R3,6  R6,6 0a, 6 06,6 
Ga, 4&l$4,7 P7,7 Ga, 7 07,7 
G1,2&F2,8  F8,8 01,8 08,8 
G1,3&P3,9  R9,9 01,9 09,9 

10 G1,4 &RR4,10 R10,10 01,10 010, 10 
11 G2, a &Pa, l l  Rl1,11 02, 11 011, 11 
12 02,1 &Pl ,  12 P12,12 02, 12 012, 12 
13 02,2 &R2,13 R13,13 02, 13 013, 13 
14 02,3&P3,]4 P14, i4 02, 14. 014, 14 
15 02,4 &P4,15 R15,15 02, 15 015, 15 
16 G3, a &Ra, 16 RR16,16 03, 16 G16,16 
17 03, 1 &Rl, 17 R17,17 03, 17 017, 17 
18 03,2 &R2, 18 R18, 18 03, 18 018, 18 
19 03,3 &P3,19 P19, 19 03, 19 019, 19 
20 G3,4&P4,20 R20,20 03,20 020,20 
21 q4, a &Pa, 21 P21,21 04, 21 021, 21 
22 04, 1 &R1,22 RR22,22 04,22 022, 22 
23 04,2 &R2,23 RR23,23 04, 23 023, 23 
24 04 ,3&~3 ,24  i024,24 04,24 024,24 
25 04,4 &R4,25 R25,25 ~4,25 025,25 
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Applying our "one-literal clause rule," 

G1 
G1 
Ga 
P2 
"23 6 
P 4 7  
P2, 8 
'23, 9 
'24, 10 
Ra, 11 
R1, 12 
P2, 13 
'23, 14 
'24 15 
Ra 16 
Pl 17 
P2 18 
P3 19 
'2420 
Ra 21 
R1 22 
R2 23 
R3 24 
R4 25 

a & G a ,  1 
a &G1,2 
I &G1,3 
1 &Ga, 4 
5 P5,5 

R6, 6 
~7, 7 
"28,8 
'29,9 
'210, 
'211, 
P12, 
'213, 
'214, 
'215, 
P16, 
F17, 
R18, 
~19, 
P20, 
P21, 
P22, 
R23, 
R24, 
P25, 

#1, 1 & 
#2, 2 & 
# 3 , 3 &  
(~4, 4 & 

Ga, 2 & P2, 5 
Ga, 3 &R3,6 
Ga, 4 & R4, 7 
ql ,  2 & P2, 8 
G1, 3 & RR3, 9 

10 G1 4 &P4 ,10  
11 G2 a & P a ,  11 
12 G2 1 &P1,12 
13 G2 2 &P2,13 
14 G2 3 &P3,14 
15 G2 4 &R4,15 
16 G3 a & Pa, 16 
17 G3, 1 & Pl, 17 
18 G3, 2 & P2, 18 
19 G3, 3 & P3, 19 
20 G3, 4 & P4, 20 
21 G4, a & Fa, 21 
22 G4, 1 & R1, 22 
23 CG4, 2 & "22, 23 
24 G4, 3 & "23, 24 
25 G4, 4 & '24, 25 

P5, 5 
R6, 6 
'27, 7 
PS, 8 
RR9,9 

Ga, 5 
~a, 6 
~a, 7 
~1, 8 
~1, 9 

R10, 10 
Rll, 11 
P12, 12 
P13, 13 
RR14, 14 
PlS, 15 
R16, 16 
R17 17 
R18 18 
R19 19 
R20 20 
F21 21 
P22 22 
P23 23 
'224 24 
"225 25 

we obtain: 

# 5 , 5 &  
G6,6& 
~7, 7 & 
GS, 8& 
# 9 , 9 &  

01, 1o #1o, 1o & 
~2~11 #11, 11 & 
G2,12 #12, 12 & 
~2,13 ~13,13 & 
#2,14 #14, 14 & 
02, 15 ~15, 15 & 
#3, 16 G16,16 & 
G3, 17 G17, 17 & 
~3, 18 #18, 18 & 
G3,19 G19, 19 & 
#3,2o #2o, 2o & 
G4,21 G21,21 & 
~4,22 #22, 22 & 
G4,23 G23,23 & 
#4,24 #24, 24 & 
G4, 25 #25, 25. 

Now applying the one-literal clause rule again to eliminate Ga, a, G1, a, and 
G1, 1 yields a formula containing Ga, 1 and Ga, 1 as clauses, which is inconsistent 
by Rule I. 

The reader may be interested to see how the method works when the conjunc- 
tion of quantifier-free lines being tested is not truth-functionally inconsistent. To 
illustrate this, let us test the conjunction of the first 10 quantifier-free lines listed 
above for consistency. Applying the one-literal clause rule yields: 

1. [Ga, a &]#a, 1 Gi, 1 
2. R2,2 Gi, a & P 2 , 2  01,2 03,3 
3. R3,3 Gi, I & R 3 , 3  01,3 #4,4 
4. RR4~4 Ga, l & ' 2 4 , 4  #a, 4 #5,5 
6.1 
7. ISam e as in above list of "quantifier free 
8. twit h first clause omitted. - lines" except 
9. l 

10. J 

A second application of the one-literal clause rule deletes the clause "Ga, a" 
(which was bracketted above in anticipation of this deletion). Now all the 
clauses containing an atomic formula beginning "F" can be deleted by the affirm- 
ative-negative rule, and we obtain Ga, 1 Y (~1, 1, which reduces to the empty 
formula by one more application of the affirmative-negative rule. Thus the con- 
junction of the first 10 quantifier-free lines was consistent. A similar result is ob- 
tained on testing the result of the first 20 quantifier-free lines. 
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NOTE ADDED IN PROOF: The "affirmative-negative rule" has also been em- 
ployed, independently of our work, for testing propositional-calculus formulas by 
B. Dunham, R. Fridshal, and G. L. Sward: "A non.heuristic program for proving 
elementary logical theorems," Proceedings of the First International Conference on 
Informagon Processing, Paris, 1959. 

To the list of reports of working proof procedure programs should be added: 
Dag Prawitz, Hakan Prawitz, and Neri Vogera, "A mechanical proof procedure 
and its realization in an electronic computer," J. Assoc. Comput. Mach., 7 (1960), 
102-128. 
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