
Model Checking
An Overview, Continued…



Goals

▪ Vocabulary

▪ High-level understanding of state-of-the-art algorithms

▪ Could read the paper and understand it



Timeline

Reference: https://www.eeweb.com/profile/adarbari/articles/a-brief-history-of-formal-verification

1950s First computer-generated proof

Davis-Putnam Algorithm    1960

1970s State exploration and temporal logic

Model Checking             1981

Emerson and Clarke, Sifrakis

1960s Stanford Pascal Verifier

GRASP SAT Solver          1996

1992 BDD-based model checking

Burch, Clarke, McMillan, Dill, Hwang

1999 BMC

Biere, Cimatti, Clarke, Zhu
K-induction                        2000

Sheeran, Singh, Stalmarck

2003 SMT

Clark Barrett and others independently
Interpolant-based MC       2003

Ken McMillan

2011 IC3

Aaron Bradley

2001 Chaff SAT Solver

▪ Formal proof and model checking 
developments over the years

▪ Not necessarily to scale

▪ Today we will cover

▪ Interpolant-based Model Checking

▪ IC3

https://www.eeweb.com/profile/adarbari/articles/a-brief-history-of-formal-verification


Outline

▪ Review

▪ Approximations and Inductive Invariants

▪ Interpolation-based model checking

▪ IC3/PDR



Review: What Is Model Checking

▪ An approach for verifying the temporal behavior of a system

▪ Primarily fully-automated (“push-button”) techniques

▪ Model

▪ Representation of the system

▪ Need to decide the right level of granularity

▪ Specification

▪ High-level desired property of system

▪ Considers infinite sequences

▪ PSPACE-complete for FSMs

Model Checker

Model Spec

Counter-

Example
Proof

(optional)



Review: Symbolic Transition Systems in 
Practice

▪ States are made up of state variables 𝑣 ∈ 𝑉

▪ A state is an assignment to all variables

▪ A Transition System is ⟨𝑉, 𝐼, 𝑇⟩

▪ 𝑉: a set of state variables, 𝑉′ denotes next state variables

▪ 𝐼: a set of initial states 

▪ 𝑇: a transition relation

▪ 𝑇 𝑣0, … , 𝑣𝑛, 𝑣0
′ , … , 𝑣𝑛

′ holds when there is a transition

▪ Note: will often still use 𝑠 to denote symbolic states (just know they’re made up of variables)

▪ Symbolic state machine is built by translating another representation

▪ E.g. a program, a mathematical model, a hardware description, etc…



Review: Symbolic Transition Systems in 
Practice

▪ States are made up of state variables 𝑣 ∈ 𝑉

▪ A state is an assignment to all variables

▪ A Transition System is ⟨𝑉, 𝐼, 𝑇⟩

▪ 𝑉: a set of state variables, 𝑉′ denotes next state variables

▪ 𝐼: a set of initial states 

▪ 𝑇: a transition relation

▪ 𝑇 𝑣0, … , 𝑣𝑛, 𝑣0
′ , … , 𝑣𝑛

′ holds when there is a transition

▪ Note: will often still use 𝑠 to denote symbolic states (just know they’re made up of variables)

▪ Symbolic state machine is built by translating another representation

▪ E.g. a program, a mathematical model, a hardware description, etc…

Note:

Will often use

𝑠 ≔ 𝑣0, … 𝑣𝑛
to represent a state.

Will use a subscript for time 

when it matters

Might drop arguments in T



Review: Symbolic Transition System Example

▪ 2 variables: 𝑉 = 𝑣0, 𝑣1

▪ 𝑆0 ≔ ¬𝑣0 ∧ ¬𝑣1,   𝑆1 ≔ ¬𝑣0 ∧ 𝑣1

▪ 𝑆2 ≔ 𝑣0 ∧ ¬𝑣1,     𝑆3 ≔ 𝑣0 ∧ 𝑣1

▪ Transition relation
¬𝑣0 ∧ ¬𝑣1 ⇒ ¬𝑣0

′ ∧ 𝑣1
′ ∨ 𝑣0

′ ∧ ¬𝑣1
′ ∧

¬𝑣0 ∧ 𝑣1 ⇒ 𝑣0
′ ∧ 𝑣1

′ ∧
𝑣0 ∧ ¬𝑣1 ⇒ 𝑣0

′ ∧ 𝑣1
′ ∧

𝑣0 ∧ 𝑣1 ⇒ (𝑣0
′ ∧ 𝑣1

′)

S0

S1

S2

S3



Reminder: State Machine vs Execution

State Machine uses capitals

S0

S1

S2

S3

Symbolic execution uses lowercase

Concrete Execution:

s0=S0, s1=S2, s2=S3, s3=S3

s0 s1 s2 s3



BDD-based model checking

▪ Start with 𝑅 = 𝐼𝑛𝑖𝑡

▪ Keep computing image and growing reachable states

▪ Stop when there’s a fixpoint (reachable states not growing)

▪ Can handle ~1020 states

▪ More with abstraction techniques and compositional model checking



Review: BMC Graphically

𝑠0 𝑠1 𝑠2 𝑠𝑘

¬𝑃 𝑠𝑘 ?

…

𝐼(𝑠0)

𝑠0 must be an initial state Check if it can violate the 

property at time k



Review: K-Induction Graphically

𝑠0 𝑠1 𝑠2 𝑠𝑘

¬𝑃 𝑠𝑘 ?

…

𝑠0 𝑠1 𝑠2 𝑠𝑘

¬𝑃 𝑠𝑘 ?

…

Arbitrary starting state 𝑠0
such that 𝑃 𝑠0 holds

𝑃 𝑠0 𝑃 𝑠1 𝑃 𝑠2

𝑠𝑘−1

𝑃 𝑠𝑘−1

𝐼(𝑠0)

𝑠0 must be an initial state

Base Case

Inductive Case…



Review: Inductive Invariants

▪ The goal of most modern model checking algorithms

▪ Over finite-domain, just need to show that algorithm makes progress, and it will 
eventually find an inductive invariant

▪ E.g. in the worst case, the reachable states are themselves an inductive invariant

▪ Hopefully there’s an easier to find inductive invariant that is sufficient

▪ Inductive Invariant: 𝐼𝐼

▪ 𝐼𝑛𝑖𝑡(𝑠) ⇒ 𝐼𝐼(𝑠)

▪ T 𝑠, 𝑠′ ∧ 𝐼𝐼(𝑠) ⇒ 𝐼𝐼(𝑠′)

▪ 𝐼𝐼 𝑠 ⇒ 𝑃(𝑠)

State Space 

Property

Simple Inductive 

Invariant

Reachable

States



Searching for Inductive Invariants

▪ Interpolant-based model checking

▪ IC3/PDR

▪ For the remainder of this talk, we’re assuming safety properties

▪ Can always perform liveness to safety transformation



Building Blocks: Approximations

▪ Problems

▪ Explicit reachability computation (e.g. BDDs) is difficult

▪ Inductive invariants are difficult to find

▪ Solution (motivation for approximations)

▪ Build approximations of reachable states

▪ Iteratively refine it until inductive



What is an approximation?

▪ Actual reachable state set: 𝑅

▪ Over-approximation, 𝑂: 𝑅 → 𝑂

▪ Proofs on over-approximation holds

▪ Counterexamples can be spurious

▪ Under-approximation, 𝑈: 𝑈 → 𝑅

▪ Proofs on under-approximation can be spurious

▪ Counterexamples are real

Over-approximation

Exact States

Under-approximation



Craig Interpolation

▪ Given an unsatisfiable formula, 𝐴 ∧ 𝐵

▪ Craig Interpolant, 𝐼

▪ 𝐴 → 𝐼

▪ 𝐼 ∧ 𝐵 is UNSAT

▪ 𝑉 𝐼 ⊆ 𝑉 𝐴 ⋂𝑉(𝐵)

▪ Where 𝑉 returns the free variables (uninterpreted constants) of a formula

▪ We can use interpolants as over-approximations of 𝐴



Obtaining Craig Interpolants

▪ Mechanical over SAT

▪ Label clauses in the proof

▪ Some straightforward post-processing

▪ Non-trivial for SMT

▪ But there are solvers that support it

▪ MathSAT

▪ Smt-Interpol

▪ CVC4 – through SyGuS



Obtaining Craig Interpolants

▪ Not all theories admit (quantifier-free) interpolants

▪ Arrays do not guarantee quantifier-free interpolants

▪ Example:
𝐴 ≔ 𝑎 = 𝑠𝑡𝑜𝑟𝑒 𝑏, 𝑖, 𝑒
𝐵 ≔ 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎, 𝑗 ≠ 𝑠𝑒𝑙𝑒𝑐𝑡 𝑏, 𝑗 ∧ 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎, 𝑘 ≠ 𝑠𝑒𝑙𝑒𝑐𝑡 𝑏, 𝑘 ∧ 𝑗 ≠ 𝑘
𝑉 𝐴 ⋂𝑉 𝐵 ≔ {𝑎, 𝑏}

▪ There is an extension to the array theory for supporting quantifier free 
interpolants: “Quantifier-Free Interpolation of a Theory of Arrays”



Interpolant-based Model Checking

▪ Big picture

▪ Perform BMC

▪ Iteratively compute and refine an over-approximation of states reachable in k steps

▪ If it becomes inductive, you’re done



Interpolants for Abstraction from BMC Run

▪ Obtain interpolant, 𝐼, from an unsat BMC run with A and B as shown below

▪ Useful properties

▪ 𝐼 over-approximates A, i.e. states reachable in one-step from Init: 𝐴 → 𝐼

▪ There are no states reachable in 𝑘 − 1 steps from 𝐼 that violate the property: 𝐼 ∧ 𝐵 UNSAT

▪ 𝐼 only contains symbols from one time step (time 1): 𝑉 𝐼 ⊆ 𝑉 𝐴 ⋂𝑉(𝐵)

A B

𝐼𝑛𝑖𝑡 ∧ 𝑇 𝑠0, 𝑠1 𝑇 𝑠1, 𝑠2 ∧ ⋯∧ 𝑇 𝑠𝑘−1, 𝑠𝑘 ∧ ¬𝑃 𝑠𝑘



Interpolation-based Model Checking
if check(Init ∧ 𝑇 𝑠0, 𝑠1 ∧ (¬𝑃 𝑠0 ∨ ¬𝑃 𝑠1 )

return False
𝑅 = 𝐼𝑛𝑖𝑡, k=2
while True

𝐴 ≔ 𝑅 ∧ 𝑇 𝑠0, 𝑠1 , 𝐵 ≔ ¬𝑃 𝑠𝑘 ∧ 𝑖=1ٿ
𝑘−1𝑇(𝑠𝑖 , 𝑠𝑖+1)

if check(𝐴 ∧ 𝐵)
if 𝑅 == Init

return False
else

k++
else

𝐼 = get_interpolant()
𝑅 = 𝑅 ∨ 𝐼[1/0] // map symbols at 1 to symbols at 0
if ¬check(𝑅 ∧ 𝑇 𝑠0, 𝑠1 ∧ ¬𝑅 𝑠1 )

return True



Interpolant-based Model Checking Example

▪ Start – can’t violate in 2 steps

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9

R over-approx

Bad

P = ¬𝑆9



Interpolant-based Model Checking Example

▪ k = 2

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9



Interpolant-based Model Checking Example

▪ k = 2

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9



Interpolant-based Model Checking Example

▪ k = 2, can reach S9 in 2 steps from R

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9



Interpolant-based Model Checking Example

▪ k = 3

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9



Interpolant-based Model Checking Example

▪ k = 3

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9



Interpolant-based Model Checking Example

▪ k = 3, interpolant guarantees property not violated in k-1 → 2 steps

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9



Interpolant-based Model Checking Example

▪ Terminate with True!

S0

S1

S2

S3

S4

S5
S6 S7

S8

S9



Interpolant-based model checking

▪ Advantages

▪ Approximate reachability

▪ Clever refinements

▪ Disadvantages

▪ Requires unrolling (can become expensive)

▪ Needs to restart every time k is incremented

▪ Refinements are clever, but not directly targeting induction



IC3 / PDR

▪ State-of-the-art model checking approach for proofs

▪ It can also find bugs faster than BMC in some cases

▪ For the purposes of the talk, focus on SAT

▪ Has been extended to SMT, but it’s more complicated

▪ Covering the simplest version of SAT-based IC3

▪ Hybrid of original IC3 paper and PDR paper



IC3: Vocabulary

▪ Inductive Candidate: 𝐶

▪ 𝐼𝑛𝑖𝑡(𝑠) ⇒ 𝐶(𝑠)

▪ T 𝑠, 𝑠′ ∧ 𝐶(𝑠) ⇒ 𝐶(𝑠′)

▪ Manipulating variables

▪ 𝑣0 ∨ ¬𝑣2 ∨ 𝑣8

▪ ¬𝑣0 ∧ 𝑣2 ∧ ¬𝑣8

▪ State

▪ 𝑠 = 𝑣0 ∧ ¬𝑣1 ∧ ⋯∧ 𝑣𝑛

Initiation

Consecution

Clause

Cube (inverse of clause)

Cube over all variables 

(aka a “minterm”)



IC3: Vocabulary

▪ Counterexample to Induction (CTI)

▪ Model assignment from failed consecution

▪ Attempt consecution on this program using property as inductive candidate

▪ E.g. k-induction for k = 1

▪ 𝑦 ≥ 1 ∧ 𝑥′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦 + 𝑥 ∧ ¬(𝑦′ ≥ 1) is SAT (consecution fails)

▪ CTI: {x = -1, y = 1} 

x = 1; y = 1;
while *:

y = y + x;
x = x + 1; 

Property: y ≥ 1

P P’transition relation 



IC3: Relative Induction

▪ Property 𝑦 ≥ 1 is not inductive

▪ System does have an easy invariant: 𝜙 ≔ 𝑥 ≥ 0

▪ 𝑥 ≥ 0 true in the initial state

▪ x ≥ 0 ∧ 𝑥′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦 + 𝑥 ∧ ¬(𝑥′ ≥ 0) is UNSAT (inductive proof)

▪ Property 𝑦 ≥ 1 is inductive relative to this invariant, 𝜙

▪ x ≥ 0 ∧ 𝑦 ≥ 1 ∧ 𝑥′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦 + 𝑥 ∧ ¬(𝑦′ ≥ 1) is UNSAT

P P’𝜙 transition relation 

x = 1; y = 1;
while *:

y = y + x;
x = x + 1;

Property: y ≥ 1



High-level Idea

▪ Build a sequence of over-approximations (e.g. formulas)

▪ Sequence of frames, F

▪ where F[k] is an over-approximation of the states reachable in k steps

▪ Frames are in CNF

▪ Refine these frames using CTIs

▪ When there is an F[i] that is (one-step) inductive, you are done

▪ If the property is false, you’ll discover that when trying to refine a frame



Another View

▪ What are frames?

▪ F[k] over-approximates the states reachable in k steps

▪ Alternatively,

▪ F[k] contains a “guess” at invariants

▪ They don’t hold inductively yet

▪ But, they hold for up to k steps

▪ i.e. they seem like reasonable guesses for an invariant



IC3: Details

▪ IC3 maintains the following invariants on its frames:

▪ F[0] = Init

▪ F[i] ∧ 𝑇 → F[i+1]   for 0 ≤ i < k

▪ F[i] → P                for 0 ≤ i < k

▪ Note that F[k] does not necessarily imply P

▪ We iteratively refine it until it does imply P, 



IC3: Proof Obligations

▪ Proof obligation (𝑠, 𝑖)

▪ Cube s at frame i

▪ Handling proof obligations: Check 𝐹 𝑖 − 1 ∧ ¬𝑠 ∧ 𝑇 ∧ 𝑠′

▪ If UNSAT

▪ ¬𝑠 is inductive relative to F[i-1] (aka not reachable in one-step from F[i-1]

▪ If SAT, get a CTI

▪ ∃ 𝑐 . 𝐹 𝑖 − 1 ∧ ¬𝑠 ∧ 𝑐 ∧ 𝑇 → 𝑠′

▪ There’s a state contained in F[i-1] that reaches s’ in one step

▪ Add proof obligation (𝑐, 𝑖 − 1) and recurse



IC3: Proof Obligation Outcomes

▪ Case 1: Counterexample

F[0] = Init

F[1]

F[2]
⋮

F[k] (𝑠𝑘, k)   obtained from 𝐹 𝑘 ∧ ¬𝑃′



IC3: Proof Obligation Outcomes

▪ Case 1: Counterexample – obtain trace from recursive proof obligations

F[0] = Init

F[1]

F[2]
⋮

F[k]

𝑠0 reachable from Init

(𝑠1, 1)   obtained from 𝐹 1 ∧ ¬𝑠2 ∧ 𝑇 ∧ 𝑠2′

(𝑠2, 2)   obtained from 𝐹 2 ∧ ¬𝑠3 ∧ 𝑇 ∧ 𝑠3′
⋮

(𝑠𝑘, k)   obtained from 𝐹 𝑘 ∧ ¬𝑃′



IC3: Proof Obligation Outcomes

▪ Case 2: s is not reachable

F[0] = Init

F[1]

F[2]
⋮

F[k]

(𝑠1, 1)

(𝑠2, 2)
⋮

(𝑠𝑘, k)   obtained from 𝐹 𝑘 ∧ ¬𝑃′



IC3: Proof Obligation Outcomes

▪ Case 2: s is not reachable

F[0] = Init

F[1]

F[2]
⋮

F[k]

𝑠0 not reachable from Init

(𝑠1, 1)

(𝑠2, 2)
⋮

(𝑠𝑘, k)   obtained from 𝐹 𝑘 ∧ ¬𝑃′



IC3: Proof Obligation Outcomes

▪ Case 2: s is not reachable

F[0] = Init

F[1]

F[2]
⋮

F[k]

𝑠0 not reachable from Init                      block in F[1]

(𝑠1, 1)

(𝑠2, 2)
⋮

(𝑠𝑘, k)   obtained from 𝐹 𝑘 ∧ ¬𝑃′



IC3: Proof Obligation Outcomes

▪ Case 2: s is not reachable – refined frames

F[0] = Init

F[1]

F[2]
⋮

F[k]

𝑠0 not reachable from Init                      block in F[1]

(𝑠1, 1)                                                     block in F[2]

(𝑠2, 2)                                                     block in F[3]
⋮

(𝑠𝑘, k)   obtained from 𝐹 𝑘 ∧ ¬𝑃′ blocked by recursion



IC3 Main Loop

while SAT ? [F[k] ∧ ¬𝑃]

extract a bad state, s

recursively block proof obligation (s, k)

Termination conditions:

1. For some i, F[i] is inductive:    Property is TRUE

2. Pushed proof obligation to Init:  Property is FALSE



Congratulations!

▪ You made it through the IC3 explanation!!



Congratulations!

▪ You made it through the IC3 explanation!!

▪ But you might be wondering, is that it?

▪ We CAN’T just be blocking one state at a time, right?



Generalization

▪ For counterexample to induction, s

▪ Before creating a proof obligation: (s, i)

▪ Generalize s to cover more states

▪ Recall, the more literals in a cube s, the less states it covers

▪ Several generalization techniques

▪ Simplest one: ternary simulation

▪ Get model, replace one literal with X and simulate

▪ If no X makes it to next state, then that literal is unnecessary (drop it)



IC3 Example

F[0] = Init

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9

In F[k-1]*

Bad

P = ¬𝑆9

*Let’s just ignore the 0 case

Init does not intersect with bad state



IC3 Example

F[0] = Init

F[1] = True

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9

Push Frame

In F[k-1]*

Bad

*Let’s just ignore the 0 case



IC3 Example

F[0] = Init

F[1] = True

𝐹 1 ∧ ¬𝑃 is SAT, proof obligation (S9, 1)

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9

In F[k-1]*

Bad

*Let’s just ignore the 0 case



IC3 Example

F[0] = Init

F[1] = ¬𝑆9

𝐹 0 ∧ ¬𝑆9 ∧ 𝑆9′ is UNSAT,    block S9

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9

In F[k-1]*

Bad

*Let’s just ignore the 0 case



IC3 Example

F[0] = Init

F[1] = ¬𝑆9

F[2] = True

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9

Push Frame

In F[k-1]*

Bad

*Let’s just ignore the 0 case



IC3 Example

F[0] = Init

F[1] = ¬𝑆9

F[2] = True

𝐹 2 ∧ ¬𝑃 is SAT, proof obligation (S9, 2)

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9

In F[k-1]*

Bad

*Let’s just ignore the 0 case



IC3 Example

F[0] = Init

F[1] = ¬𝑆9

F[2] = True

𝐹 1 ∧ ¬𝑆9 ∧ 𝑆9′ is SAT,    proof obligation + generalization (𝑆7 ∨ 𝑆8, 1)

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9

In F[k-1]*

Bad

*Let’s just ignore the 0 case



IC3 Example

F[0] = Init

F[1] = ¬𝑆9 ∧ ¬𝑆7 ∧ ¬𝑆8

F[2] = ¬𝑆9

𝐹 0 ∧ ¬(𝑆7 ∨ 𝑆8) ∧ (𝑆7′ ∨ 𝑆8′) is UNSAT,   block 𝑆7 ∨ 𝑆8

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9

In F[k-1]*

Bad

*Let’s just ignore the 0 case



IC3 Example

F[0] = Init

F[1] = ¬𝑆9 ∧ ¬𝑆7 ∧ ¬𝑆8

F[2] = ¬𝑆9

F[3] = True

Push Frame

In F[k-1]*

Bad

*Let’s just ignore the 0 case

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9



IC3 Example

F[0] = Init

F[1] = ¬𝑆9 ∧ ¬𝑆7 ∧ ¬𝑆8

F[2] = ¬𝑆9

F[3] = True

𝐹 3 ∧ ¬𝑃 is SAT, proof obligation (S9, 3)

In F[k-1]*

Bad

*Let’s just ignore the 0 case

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9



IC3 Example

F[0] = Init

F[1] = ¬𝑆9 ∧ ¬𝑆7 ∧ ¬𝑆8

F[2] = ¬𝑆9

F[3] = True

𝐹 2 ∧ ¬𝑆9 ∧ 𝑆9′ is SAT,    proof obligation + generalization (𝑆7 ∨ 𝑆8, 2)

In F[k-1]*

Bad

*Let’s just ignore the 0 case

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9



IC3 Example

F[0] = Init

F[1] = ¬𝑆9 ∧ ¬𝑆7 ∧ ¬𝑆8

F[2] = ¬𝑆9

F[3] = True

𝐹 1 ∧ ¬(𝑆7 ∨ 𝑆8) ∧ (𝑆7′ ∨ 𝑆8′) is SAT,   proof obligation (S6, 1)

In F[k-1]*

Bad

*Let’s just ignore the 0 case
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IC3 Example

F[0] = Init

F[1] = ¬𝑆9 ∧ ¬𝑆7 ∧ ¬𝑆8 ∧ ¬𝑆6

F[2] = ¬𝑆9 ∧ ¬𝑆7 ∧ ¬𝑆8

F[3] = ¬𝑆9

𝐹 0 ∧ ¬𝑆6 ∧ 𝑆6 is UNSAT,   block S6 and previous proof obligations

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9

In F[k-1]*

Bad

*Let’s just ignore the 0 case



IC3 Example

F[0] = Init

F[1] = ¬𝑆9 ∧ ¬𝑆7 ∧ ¬𝑆8 ∧ ¬𝑆6

F[2] = ¬𝑆9 ∧ ¬𝑆7 ∧ ¬𝑆8

F[3] = ¬𝑆9

𝐹 1 is inductive!   Terminate with TRUE!

S0

S1

S2

S3

S4

S5

S6 S7

S8

S9

In F[1]

Bad



IC3 In Practice

▪ Add extra invariant to algorithm: Clauses(F[i-1]) ⊆ Clauses(F[i])

▪ Requires some processing during the algorithm

▪ But, then inductiveness check is easier

▪ Every clause 𝑐 in F[i] was obtained with a relative inductive check

▪ So if F[i-1] = F[i] syntactically then the set of clauses is inductive

▪ IC3 can be easily parallelized

▪ Instances of IC3 share produced lemmas, but not how they were obtained



IC3 in Practice

▪ Maintain a sequence of frames that are backward reachable from bad

▪ This is an underapproximation of states that can violate the property in up to k steps

▪ Property is false if the forward and backward frames ever contain the same state 
(intersect)

▪ This version of the algorithm introduces choice

▪ Previous model checking algorithms always had only one next step

▪ IC3 with two sets of frames can have multiple next steps (like a proof calculus)

▪ Many heuristics on when to apply which actions

▪ Plus many other optimizations, improvements and extensions (e.g. to SMT)



Intuition: Incremental vs Monolithic

▪ “When humans analyze systems, they produce a set of lemmas — typically 
inductive properties — that together imply the desired property. Each lemma 
holds relative to some subset of previously proved lemmas in that this prior 
knowledge is invoked in proving the new lemma. A given lemma usually focuses 
on just one aspect of the system”

- Aaron Bradley in SAT-based Model Checking Without Unrolling



Intuition: Distribution of Responsibility

▪ BMC puts all the work on the solver

▪ Interpolation-based Model Checking puts most the work on the solver

▪ IC3, by contrast, is relatively easy on the solver

▪ A typical IC3 run has tens of thousands (or more) calls to the solver checking for one-
step inductiveness

▪ But, each call is easy

▪ A controlled SAT call that prioritizes local reasoning, as opposed to unrolling based 
approaches that consider an execution



Thank you!


