
Satisfiability Modulo Theories

Materials by Clark Barrett, Stanford University

CS357: October 2019

1



Acknowledgments: Many thanks to Cesare Tinelli and Albert Oliveras for
contributing some of the material used in these slides.

Disclamer: The literature on SMT and its applications is vast. The
bibliographic references provided here are just a sample. Apologies to all
authors whose work is not cited.

2



Introduction



The Satisfiability Revolution

Princeton, c. 2000

• Chaff SAT solver: orders of magnitude faster than previous SAT
solvers

• Important observation: many real-world problems do not exhibit
worst-case theoretical performance

Palo Alto, c. 2001

• Idea: combine fast new SAT solvers with decision procedures for
decidable first-order theories

• SVC, CVC solvers (Stanford); ICS, Yices solvers (SRI)

• Satisfiability Modulo Theories (SMT) was born

3



SMT solvers

SMT solvers: general-purpose logic engines

• Given condition X , is it possible for Y to happen

• X and Y are expressed in a rich logical language
• First-order logic
• Domain-specific reasoning

• arithmetic, arrays, bit-vectors, data types, etc.

SMT solvers are changing the way people solve problems

• Instead of building a special-purpose solver

• Translate into a logical formula and use an SMT solver

• Not only easier, often better

4



SMT solvers

SMT solvers: general-purpose logic engines

• Given condition X , is it possible for Y to happen

• X and Y are expressed in a rich logical language
• First-order logic
• Domain-specific reasoning

• arithmetic, arrays, bit-vectors, data types, etc.

SMT solvers are changing the way people solve problems

• Instead of building a special-purpose solver

• Translate into a logical formula and use an SMT solver

• Not only easier, often better

4



SMT Solvers

5



SMT Solvers

5

SAT Solver
• Only sees Boolean skeleton

of problem

• Builds partial model by
assigning truth values to
literals

• Sends these literals to the
core as assertions



SMT Solvers

5

Core
• Sends each assertion to the

appropriate theory

• Sends deduced literals to
other theories/SAT solver

• Handles theory combination



SMT Solvers

5

Theory Solvers
• Decide T -satisfiability of a

conjunction of theory literals

• Incremental

• Backtrackable

• Conflict Generation

• Theory Propagation



DPLL(T ): Combining T -Solvers with SAT



Satisfiability Modulo a Theory T

Def. A formula is (un)satisfiable in a theory T , or T -(un)satisfiable, if
there is a (no) model of T that satisfies it

Note: The T -satisfiability of quantifier-free formulas is decidable iff
the T -satisfiability of conjunctions/sets of literals is decidable

(Convert the formula in DNF and check if any of its disjuncts is T -sat)

Problem: In practice, dealing with Boolean combinations of literals
is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

6



Satisfiability Modulo a Theory T

Def. A formula is (un)satisfiable in a theory T , or T -(un)satisfiable, if
there is a (no) model of T that satisfies it

Note: The T -satisfiability of quantifier-free formulas is decidable iff
the T -satisfiability of conjunctions/sets of literals is decidable

(Convert the formula in DNF and check if any of its disjuncts is T -sat)

Problem: In practice, dealing with Boolean combinations of literals
is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

6



Satisfiability Modulo a Theory T

Def. A formula is (un)satisfiable in a theory T , or T -(un)satisfiable, if
there is a (no) model of T that satisfies it

Note: The T -satisfiability of quantifier-free formulas is decidable iff
the T -satisfiability of conjunctions/sets of literals is decidable

(Convert the formula in DNF and check if any of its disjuncts is T -sat)

Problem: In practice, dealing with Boolean combinations of literals
is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

6



Satisfiability Modulo a Theory T

Def. A formula is (un)satisfiable in a theory T , or T -(un)satisfiable, if
there is a (no) model of T that satisfies it

Note: The T -satisfiability of quantifier-free formulas is decidable iff
the T -satisfiability of conjunctions/sets of literals is decidable

(Convert the formula in DNF and check if any of its disjuncts is T -sat)

Problem: In practice, dealing with Boolean combinations of literals
is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

6



Satisfiability Modulo a Theory T

Def. A formula is (un)satisfiable in a theory T , or T -(un)satisfiable, if
there is a (no) model of T that satisfies it

Note: The T -satisfiability of quantifier-free formulas is decidable iff
the T -satisfiability of conjunctions/sets of literals is decidable

(Convert the formula in DNF and check if any of its disjuncts is T -sat)

Problem: In practice, dealing with Boolean combinations of literals
is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

6



Lifting SAT Technology to SMT

Two main approaches:

1. “Eager” [PRSS99, SSB02, SLB03, BGV01, BV02]

• translate into an equisatisfiable propositional formula
• feed it to any SAT solver

Notable systems: UCLID

2. “Lazy” [ACG00, dMR02, BDS02, ABC+02]

• abstract the input formula to a propositional one
• feed it to a (DPLL-based) SAT solver
• use a theory decision procedure to refine the formula and guide

the SAT solver

Notable systems: Barcelogic, Boolector, CVC4, MathSAT, Yices, Z3

This talk will focus on the lazy approach 7



Lifting SAT Technology to SMT

Two main approaches:

1. “Eager” [PRSS99, SSB02, SLB03, BGV01, BV02]

• translate into an equisatisfiable propositional formula
• feed it to any SAT solver

Notable systems: UCLID

2. “Lazy” [ACG00, dMR02, BDS02, ABC+02]

• abstract the input formula to a propositional one
• feed it to a (DPLL-based) SAT solver
• use a theory decision procedure to refine the formula and guide

the SAT solver

Notable systems: Barcelogic, Boolector, CVC4, MathSAT, Yices, Z3

This talk will focus on the lazy approach 7



Lifting SAT Technology to SMT

Two main approaches:

1. “Eager” [PRSS99, SSB02, SLB03, BGV01, BV02]

• translate into an equisatisfiable propositional formula
• feed it to any SAT solver

Notable systems: UCLID

2. “Lazy” [ACG00, dMR02, BDS02, ABC+02]

• abstract the input formula to a propositional one
• feed it to a (DPLL-based) SAT solver
• use a theory decision procedure to refine the formula and guide

the SAT solver

Notable systems: Barcelogic, Boolector, CVC4, MathSAT, Yices, Z3

This talk will focus on the lazy approach 7



(Very) Lazy Approach for SMT – Example

g(a) = c ∧ f(g(a)) 6= f(c) ∨ g(a) = d ∧ c 6= d

Theory T : Equality with Uninterpreted Functions

Simplest setting:

• Off-line SAT solver
• Non-incremental theory solver for conjunctions of equalities and

disequalities
• Theory atoms (e.g., g(a) = c) abstracted to propositional atoms

(e.g., 1)

8



(Very) Lazy Approach for SMT – Example

g(a) = c ∧ f(g(a)) 6= f(c) ∨ g(a) = d ∧ c 6= d

Theory T : Equality with Uninterpreted Functions

Simplest setting:

• Off-line SAT solver
• Non-incremental theory solver for conjunctions of equalities and

disequalities
• Theory atoms (e.g., g(a) = c) abstracted to propositional atoms

(e.g., 1)

8



(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.

• SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

• SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.
Done: the original formula is unsatisfiable in UF.

9



(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.

• SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

• SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.
Done: the original formula is unsatisfiable in UF.

9



(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.

• SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

• SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.
Done: the original formula is unsatisfiable in UF.

9



(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.

• SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

• SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.
Done: the original formula is unsatisfiable in UF.

9



(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.

• SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

• SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.
Done: the original formula is unsatisfiable in UF.

9



(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.

• SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

• SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.
Done: the original formula is unsatisfiable in UF.

9



(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.

• SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

• SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.
Done: the original formula is unsatisfiable in UF.

9



(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.

• SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

• SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.
Done: the original formula is unsatisfiable in UF.

9



Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

• Check T -satisfiability of partial assignment M as it grows

•
• If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of

M and add ¬M0 as a clause

•
• If M is T -unsatisfiable, backtrack to some point where the

assignment was still T -satisfiable

10



Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

• Check T -satisfiability of partial assignment M as it grows

•
• If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of

M and add ¬M0 as a clause

•
• If M is T -unsatisfiable, backtrack to some point where the

assignment was still T -satisfiable

10



Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

• Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

• If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of
M and add ¬M0 as a clause

•
• If M is T -unsatisfiable, backtrack to some point where the

assignment was still T -satisfiable

10



Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

• Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

• If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of
M and add ¬M0 as a clause

•
• If M is T -unsatisfiable, backtrack to some point where the

assignment was still T -satisfiable

10



Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

• Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

• If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of
M and add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

• If M is T -unsatisfiable, backtrack to some point where the
assignment was still T -satisfiable

10



Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

• Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

• If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of
M and add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

• If M is T -unsatisfiable, backtrack to some point where the
assignment was still T -satisfiable

10



Lazy Approach – Main Benefits

• Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

• The theory solver works only with conjunctions of literals

• Modular approach:

• SAT and theory solvers communicate via a simple API [GHN+04]

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT
system with few new lines of code (tens)

11



Lazy Approach – Main Benefits

• Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

• The theory solver works only with conjunctions of literals

• Modular approach:

• SAT and theory solvers communicate via a simple API [GHN+04]

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT
system with few new lines of code (tens)

11



Lazy Approach – Main Benefits

• Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

• The theory solver works only with conjunctions of literals

• Modular approach:

• SAT and theory solvers communicate via a simple API [GHN+04]

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT
system with few new lines of code (tens)

11



An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled abstractly and declaratively as transition
systems

A transition system is a binary relation over states, induced by a set of
conditional transition rules

The framework can be first developed for SAT and then extended to
lazy SMT [NOT06, KG07]

12



Advantages of Abstract Framework

An abstract framework helps one:

• skip over implementation details and unimportant control aspects

• reason formally about solvers for SAT and SMT

• model advanced features such as non-chronological bactracking,
lemma learning, theory propagation, . . .

• describe different strategies and prove their correctness

• compare different systems at a higher level

• get new insights for further enhancements

The one described next is a re-elaboration of those in [NOT06, KG07]

13



Advantages of Abstract Framework

An abstract framework helps one:

• skip over implementation details and unimportant control aspects

• reason formally about solvers for SAT and SMT

• model advanced features such as non-chronological bactracking,
lemma learning, theory propagation, . . .

• describe different strategies and prove their correctness

• compare different systems at a higher level

• get new insights for further enhancements

The one described next is a re-elaboration of those in [NOT06, KG07]

13



The Original DPLL Procedure

• Modern SAT solvers are based on the DPLL
procedure [DP60, DLL62]

• DPLL tries to build incrementally a satisfying truth assignment
M for a CNF formula F

• M is grown by
• deducing the truth value of a literal from M and F , or
• guessing a truth value

• If a wrong guess for a literal leads to an inconsistency, the
procedure backtracks and tries the opposite value

14



An Abstract Framework for DPLL

States:

fail or 〈M,F 〉

where

• M is a sequence of literals and decision points •
denoting a partial truth assignment

• F is a set of clauses denoting a CNF formula

Def. If M = M0 •M1 • · · · •Mn where each Mi contains no decision points

• Mi is decision level i of M

• M [i] def
= M0 • · · · •Mi

15



An Abstract Framework for DPLL

States:

fail or 〈M,F 〉

Initial state:

• 〈(), F0〉, where F0 is to be checked for satisfiability

Expected final states:

• fail if F0 is unsatisfiable

• 〈M,G〉 otherwise, where
• G is equivalent to F0 and
• M satisfies G

15



Transition Rules: Notation

States treated like records:

• M denotes the truth assignment component of current state

• F denotes the formula component of current state

Transition rules in guarded assignment form [KG07]

p1 · · · pn

[M := e1] [F := e2]

updating M, F or both when premises p1, . . . , pn all hold

16



Transition Rules for the Original DPLL

Extending the assignment

Propagate
l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l, l /∈ M

M := M l

Note: When convenient, treat M as a set

Decide
l ∈ Lit(F) l, l /∈ M

M := M • l

Note: Lit(F )
def
= {l | l literal of F} ∪ {l | l literal of F}

17



Transition Rules for the Original DPLL

Extending the assignment

Propagate
l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l, l /∈ M

M := M l

Note: When convenient, treat M as a set

Decide
l ∈ Lit(F) l, l /∈ M

M := M • l

Note: Lit(F )
def
= {l | l literal of F} ∪ {l | l literal of F}

17



Transition Rules for the Original DPLL

Repairing the assignment

Fail
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail

Backtrack

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N

M := M l

Note: Last premise of Backtrack enforces chronological backtracking

18



Transition Rules for the Original DPLL

Repairing the assignment

Fail
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail

Backtrack

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N

M := M l

Note: Last premise of Backtrack enforces chronological backtracking

18



From DPLL to CDCL Solvers (1)

To model conflict-driven backjumping and learning, add to states a
third component C whose value is either no or a conflict clause

States: fail or 〈M,F,C〉

Initial state:

• 〈(), F0, no〉, where F0 is to be checked for satisfiability

Expected final states:

• fail if F0 is unsatisfiable
• 〈M,G, no〉 otherwise, where

• G is equivalent to F0 and
• M satisfies G

19



From DPLL to CDCL Solvers (1)

To model conflict-driven backjumping and learning, add to states a
third component C whose value is either no or a conflict clause

States: fail or 〈M,F,C〉

Initial state:

• 〈(), F0, no〉, where F0 is to be checked for satisfiability

Expected final states:

• fail if F0 is unsatisfiable
• 〈M,G, no〉 otherwise, where

• G is equivalent to F0 and
• M satisfies G

19



From DPLL to CDCL Solvers (2)

Replace Backtrack with

Conflict
C = no l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := l1 ∨ · · · ∨ ln

Explain
C = l ∨D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Backjump
C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M := M[i] l

Maintain invariant: F |=p C and M |=p ¬C when C 6= no

Note: |=p denotes propositional entailment

20



From DPLL to CDCL Solvers (2)

Replace Backtrack with

Conflict
C = no l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := l1 ∨ · · · ∨ ln

Explain
C = l ∨D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Backjump
C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M := M[i] l

Note: l ≺M l′ if l occurs before l′ in M

lev l = i iff l occurs in decision level i of M

Maintain invariant: F |=p C and M |=p ¬C when C 6= no

Note: |=p denotes propositional entailment
20



From DPLL to CDCL Solvers (2)

Replace Backtrack with

Conflict
C = no l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := l1 ∨ · · · ∨ ln

Explain
C = l ∨D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Backjump
C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M := M[i] l

Maintain invariant: F |=p C and M |=p ¬C when C 6= no

Note: |=p denotes propositional entailment

20



From DPLL to CDCL Solvers (3)

Modify Fail to

Fail
C 6= no • /∈ M

fail

21



From DPLL to CDCL Solvers (3)

Modify Fail to

Fail
C 6= no • /∈ M

fail

21



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

22



From DPLL to CDCL Solvers (4)

Also add

Learn
F |=p C C /∈ F

F := F ∪ {C}

Forget
C = no F = G ∪ {C} G |=p C

F := G

Restart
M := M[0] C := no

Note: Learn can be applied to any clause stored in C when C 6= no

23



Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the
transition system with rules

Propagate, Decide,

Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic DPLL def
=

{ Propagate, Decide, Conflict, Explain, Backjump }

DPLL def
= Basic DPLL + { Learn, Forget, Restart }

24



Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the
transition system with rules

Propagate, Decide,

Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic DPLL def
=

{ Propagate, Decide, Conflict, Explain, Backjump }

DPLL def
= Basic DPLL + { Learn, Forget, Restart }

24



The Basic DPLL System – Correctness

Some terminology:

Irreducible state: state for which no Basic DPLL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution starting with
F = F0 and ending with fail, the clause set F0 is unsatisfiable.

Proposition (Completeness) For every exhausted execution starting
with F = F0 and ending with C = no, the clause set F0 is satisfied by
M.

25



The Basic DPLL System – Correctness

Some terminology:

Irreducible state: state for which no Basic DPLL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in Basic DPLL is
finite.

Note: This is not so immediate, because of Backjump.

Proposition (Soundness) For every exhausted execution starting with
F = F0 and ending with fail, the clause set F0 is unsatisfiable.

Proposition (Completeness) For every exhausted execution starting
with F = F0 and ending with C = no, the clause set F0 is satisfied by
M.

25



The Basic DPLL System – Correctness

Some terminology:

Irreducible state: state for which no Basic DPLL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in Basic DPLL is
finite.

Lemma Every exhausted execution ends with either C = no or fail.

Proposition (Soundness) For every exhausted execution starting with
F = F0 and ending with fail, the clause set F0 is unsatisfiable.

Proposition (Completeness) For every exhausted execution starting
with F = F0 and ending with C = no, the clause set F0 is satisfied by
M.

25



The Basic DPLL System – Correctness

Some terminology:

Irreducible state: state for which no Basic DPLL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution starting with
F = F0 and ending with fail, the clause set F0 is unsatisfiable.

Proposition (Completeness) For every exhausted execution starting
with F = F0 and ending with C = no, the clause set F0 is satisfied by
M.

25



The DPLL System – Strategies

• Applying
• one Basic DPLL rule between each two Learn applications and
• Restart less and less often

ensures termination

• A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

26



The DPLL System – Strategies

• Applying
• one Basic DPLL rule between each two Learn applications and
• Restart less and less often

ensures termination

• A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

26



The DPLL System – Strategies

• Applying
• one Basic DPLL rule between each two Learn applications and
• Restart less and less often

ensures termination

• A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

26



The DPLL System – Strategies

• Applying
• one Basic DPLL rule between each two Learn applications and
• Restart less and less often

ensures termination

• A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

26



The DPLL System – Strategies

• Applying
• one Basic DPLL rule between each two Learn applications and
• Restart less and less often

ensures termination

• A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

26



The DPLL System – Strategies

• Applying
• one Basic DPLL rule between each two Learn applications and
• Restart less and less often

ensures termination

• A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

26



The DPLL System – Strategies

• Applying
• one Basic DPLL rule between each two Learn applications and
• Restart less and less often

ensures termination

• A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

26



The DPLL System – Strategies

• Applying
• one Basic DPLL rule between each two Learn applications and
• Restart less and less often

ensures termination

• A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

26



From SAT to SMT

Same states and transitions but

• F contains quantifier-free clauses in some theory T

• M is a sequence of theory literals and decision points

• the DPLL system is augmented with rules

T -Conflict, T -Propagate, T -Explain

• maintains invariant: F |=T C and M |=p ¬C when C 6= no

Def. F |=T G iff every model of T that satisfies F satisfies G as well

27



SMT-level Rules

Fix a theory T

T -Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥

C := l1 ∨ · · · ∨ ln

T -Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T -Explain
C = l ∨D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Note: ⊥ = empty clause

Note: |=T decided by theory solver

28



SMT-level Rules

Fix a theory T

T -Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥

C := l1 ∨ · · · ∨ ln

T -Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T -Explain
C = l ∨D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Note: ⊥ = empty clause

Note: |=T decided by theory solver

28



SMT-level Rules

Fix a theory T

T -Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥

C := l1 ∨ · · · ∨ ln

T -Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T -Explain
C = l ∨D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Note: ⊥ = empty clause

Note: |=T decided by theory solver

28



Modeling the Very Lazy Theory Approach

T -Conflict is enough to model the naive integration of SAT solvers
and theory solvers seen in the earlier UF example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail

29



Modeling the Very Lazy Theory Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail

29



Modeling the Very Lazy Theory Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail

29



Modeling the Very Lazy Theory Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail

29



Modeling the Very Lazy Theory Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail

29



Modeling the Very Lazy Theory Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail

29



Modeling the Very Lazy Theory Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail

29



Modeling the Very Lazy Theory Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail

29



Modeling the Very Lazy Theory Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail

29



Modeling the Very Lazy Theory Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail

29



Modeling the Very Lazy Theory Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail

29



A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T -solver,
which can

1. check the T -satisfiability of M as it is extended and
2. identify a small T -unsatisfiable subset of M once M becomes

T -unsatisfiable

30



A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T -solver,
which can

1. check the T -satisfiability of M as it is extended and
2. identify a small T -unsatisfiable subset of M once M becomes

T -unsatisfiable

30



A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T -solver,
which can

1. check the T -satisfiability of M as it is extended and
2. identify a small T -unsatisfiable subset of M once M becomes

T -unsatisfiable

30



A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T -solver,
which can

1. check the T -satisfiability of M as it is extended and
2. identify a small T -unsatisfiable subset of M once M becomes

T -unsatisfiable

30



A Better Lazy Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T -Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T -Conflict

fail by Fail

31



A Better Lazy Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T -Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T -Conflict

fail by Fail

31



A Better Lazy Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T -Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T -Conflict

fail by Fail

31



A Better Lazy Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T -Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T -Conflict

fail by Fail

31



A Better Lazy Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T -Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T -Conflict

fail by Fail

31



A Better Lazy Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T -Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T -Conflict

fail by Fail

31



A Better Lazy Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T -Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T -Conflict

fail by Fail

31



A Better Lazy Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T -Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T -Conflict

fail by Fail

31



A Better Lazy Approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T -Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T -Conflict

fail by Fail

31



Lazy Approach – Strategies

Ignoring Restart (for simplicity), a common strategy is to apply the
rules using the following priorities:

1. If a clause is falsified by the current assignment M,
apply Conflict

2. If M is T -unsatisfiable, apply T -Conflict

3. Apply Fail or Explain+Learn+Backjump as appropriate

4. Apply Propagate

5. Apply Decide

Note: Depending on the cost of checking the T -satisfiability of M,
Step (2) can be applied with lower frequency or priority

32



Lazy Approach – Strategies

Ignoring Restart (for simplicity), a common strategy is to apply the
rules using the following priorities:

1. If a clause is falsified by the current assignment M,
apply Conflict

2. If M is T -unsatisfiable, apply T -Conflict

3. Apply Fail or Explain+Learn+Backjump as appropriate

4. Apply Propagate

5. Apply Decide

Note: Depending on the cost of checking the T -satisfiability of M,
Step (2) can be applied with lower frequency or priority

32



Theory Propagation

With T -Conflict as the only theory rule, the theory solver is used just
to validate the choices of the SAT engine

With T -Propagate and T -Explain, it can also be used to guide the
engine’s search [Tin02]

T -Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T -Explain
C = l ∨D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

33



Theory Propagation

With T -Conflict as the only theory rule, the theory solver is used just
to validate the choices of the SAT engine

With T -Propagate and T -Explain, it can also be used to guide the
engine’s search [Tin02]

T -Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T -Explain
C = l ∨D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

33



Theory Propagation Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T -Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T -Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict

fail by Fail

Note: T -propagation eliminates search altogether in this case
no applications of Decide are needed

34



Theory Propagation Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T -Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T -Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict

fail by Fail

Note: T -propagation eliminates search altogether in this case
no applications of Decide are needed

34



Theory Propagation Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T -Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T -Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict

fail by Fail

Note: T -propagation eliminates search altogether in this case
no applications of Decide are needed

34



Theory Propagation Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T -Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T -Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict

fail by Fail

Note: T -propagation eliminates search altogether in this case
no applications of Decide are needed

34



Theory Propagation Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T -Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T -Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict

fail by Fail

Note: T -propagation eliminates search altogether in this case
no applications of Decide are needed

34



Theory Propagation Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T -Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T -Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict

fail by Fail

Note: T -propagation eliminates search altogether in this case
no applications of Decide are needed

34



Theory Propagation Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T -Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T -Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict

fail by Fail

Note: T -propagation eliminates search altogether in this case
no applications of Decide are needed

34



Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the
transition system with rules

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T -Conflict, T -Propagate, T -Explain

(3) Learn, Forget, Restart

Basic DPLL Modulo Theories def
= (1) + (2)

DPLL Modulo Theories def
= (1) + (2) + (3)

35



Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the
transition system with rules

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T -Conflict, T -Propagate, T -Explain

(3) Learn, Forget, Restart

Basic DPLL Modulo Theories def
= (1) + (2)

DPLL Modulo Theories def
= (1) + (2) + (3)

35



Correctness

Updated terminology:

Irreducible state: state to which no Basic DPLL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution starting with
F = F0 and ending with fail, the clause set F0 is T -unsatisfiable.

Proposition (Completeness) For every exhausted execution starting
with F = F0 and ending with C = no, F0 is T -satisfiable; specifically,
M is T -satisfiable and M |=p F0.

36



Correctness

Updated terminology:

Irreducible state: state to which no Basic DPLL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.

Lemma Every exhausted execution ends with either C = no or fail.

Proposition (Soundness) For every exhausted execution starting with
F = F0 and ending with fail, the clause set F0 is T -unsatisfiable.

Proposition (Completeness) For every exhausted execution starting
with F = F0 and ending with C = no, F0 is T -satisfiable; specifically,
M is T -satisfiable and M |=p F0.

36



Correctness

Updated terminology:

Irreducible state: state to which no Basic DPLL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution starting with
F = F0 and ending with fail, the clause set F0 is T -unsatisfiable.

Proposition (Completeness) For every exhausted execution starting
with F = F0 and ending with C = no, F0 is T -satisfiable; specifically,
M is T -satisfiable and M |=p F0.

36



DPLL(T ) Architecture

The approach formalized so far can be implemented with a simple
architecture named DPLL(T ) [GHN+04, NOT06]

DPLL(T ) = DPLL(X) engine + T -solver

37



DPLL(T ) Architecture

The approach formalized so far can be implemented with a simple
architecture named DPLL(T ) [GHN+04, NOT06]

DPLL(T ) = DPLL(X) engine + T -solver

DPLL(X):

• Very similar to a SAT solver, enumerates Boolean models

• Not allowed: pure literal, blocked literal detection, ...

• Required: incremental addition of clauses

• Desirable: partial model detection

37



DPLL(T ) Architecture

The approach formalized so far can be implemented with a simple
architecture named DPLL(T ) [GHN+04, NOT06]

DPLL(T ) = DPLL(X) engine + T -solver

T -solver:

• Checks the T -satisfiability of conjunctions of literals

• Computes theory propagations

• Produces explanations of T -unsatisfiability/propagation

• Must be incremental and backtrackable

37



Reasoning by Cases in Theory Solvers

For certain theories, determining that a set M is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) 6= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) 6= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i 6= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T -unsatisfiable

38



Reasoning by Cases in Theory Solvers

For certain theories, determining that a set M is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) 6= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) 6= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i 6= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T -unsatisfiable

38



Reasoning by Cases in Theory Solvers

For certain theories, determining that a set M is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) 6= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) 6= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i 6= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T -unsatisfiable

38



Reasoning by Cases in Theory Solvers

For certain theories, determining that a set M is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) 6= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) 6= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i 6= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T -unsatisfiable

38



Reasoning by Cases in Theory Solvers

For certain theories, determining that a set M is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) 6= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) 6= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i 6= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T -unsatisfiable

38



Case Splitting

A complete T -solver reasons by cases via (internal) case splitting and
backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T -solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send them as
needed to the SAT engine for it to split on them [BNOT06]

Possible benefits:

• All case-splitting is coordinated by the SAT engine

• Only have to implement case-splitting infrastructure in one place

• Can learn a wider class of lemmas

39



Case Splitting

A complete T -solver reasons by cases via (internal) case splitting and
backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T -solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send them as
needed to the SAT engine for it to split on them [BNOT06]

Possible benefits:

• All case-splitting is coordinated by the SAT engine

• Only have to implement case-splitting infrastructure in one place

• Can learn a wider class of lemmas

39



Case Splitting

A complete T -solver reasons by cases via (internal) case splitting and
backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T -solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send them as
needed to the SAT engine for it to split on them [BNOT06]

Possible benefits:

• All case-splitting is coordinated by the SAT engine

• Only have to implement case-splitting infrastructure in one place

• Can learn a wider class of lemmas

39



Case Splitting

A complete T -solver reasons by cases via (internal) case splitting and
backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T -solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send them as
needed to the SAT engine for it to split on them [BNOT06]

Possible benefits:

• All case-splitting is coordinated by the SAT engine

• Only have to implement case-splitting infrastructure in one place

• Can learn a wider class of lemmas

39



Splitting on Demand

Basic idea: encode case splits as a set of clauses and send them as
needed to the SAT engine for it to split on them

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)︸ ︷︷ ︸
s′

, . . .}

• Main SMT module: “Is M T -unsatisfiable?”

• T -solver: “I do not know yet, but it will help me if you consider
these theory lemmas:

s = s′ ∧ i = j → s = t, s = s′ ∧ i 6= j → s = r(a, j) ”

40



Splitting on Demand

Basic idea: encode case splits as a set of clauses and send them as
needed to the SAT engine for it to split on them

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)︸ ︷︷ ︸
s′

, . . .}

• Main SMT module: “Is M T -unsatisfiable?”

• T -solver: “I do not know yet, but it will help me if you consider
these theory lemmas:

s = s′ ∧ i = j → s = t, s = s′ ∧ i 6= j → s = r(a, j) ”

40



Splitting on Demand

Basic idea: encode case splits as a set of clauses and send them as
needed to the SAT engine for it to split on them

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)︸ ︷︷ ︸
s′

, . . .}

• Main SMT module: “Is M T -unsatisfiable?”

• T -solver: “I do not know yet, but it will help me if you consider
these theory lemmas:

s = s′ ∧ i = j → s = t, s = s′ ∧ i 6= j → s = r(a, j) ”

40



Modeling Splitting on Demand

To model the generation of theory lemmas for case splits, add the rule

T -Learn

|=T ∃v(l1 ∨ · · · ∨ ln) l1, . . . , ln ∈ LS v vars not in F

F := F ∪ {l1 ∨ · · · ∨ ln}

where LS is a finite set of literals dependent on the initial set of
clauses (see [BNOT06] for a formal definition of LS)

Note: For many theories with a theory solver, there exists
an appropriate finite LS for every input F

The set LS does not need to be computed explicitly

41



Modeling Splitting on Demand

To model the generation of theory lemmas for case splits, add the rule

T -Learn

|=T ∃v(l1 ∨ · · · ∨ ln) l1, . . . , ln ∈ LS v vars not in F

F := F ∪ {l1 ∨ · · · ∨ ln}

where LS is a finite set of literals dependent on the initial set of
clauses (see [BNOT06] for a formal definition of LS)

Note: For many theories with a theory solver, there exists
an appropriate finite LS for every input F

The set LS does not need to be computed explicitly

41



Modeling Splitting on Demand

Now we can relax the requirement on the theory solver:

When M |=p F, it must either

• determine whether M |=T ⊥ or
• generate a new clause by T -Learn containing

at least one literal of LS undefined in M

The T -solver is required to determine whether M |=T ⊥ only if all
literals in LS are defined in M

Note: In practice, to determine if M |=T ⊥, the T -solver only needs
a small subset of LS to be defined in M

42



Modeling Splitting on Demand

Now we can relax the requirement on the theory solver:

When M |=p F, it must either

• determine whether M |=T ⊥ or
• generate a new clause by T -Learn containing

at least one literal of LS undefined in M

The T -solver is required to determine whether M |=T ⊥ only if all
literals in LS are defined in M

Note: In practice, to determine if M |=T ⊥, the T -solver only needs
a small subset of LS to be defined in M

42



Modeling Splitting on Demand

Now we can relax the requirement on the theory solver:

When M |=p F, it must either

• determine whether M |=T ⊥ or
• generate a new clause by T -Learn containing

at least one literal of LS undefined in M

The T -solver is required to determine whether M |=T ⊥ only if all
literals in LS are defined in M

Note: In practice, to determine if M |=T ⊥, the T -solver only needs
a small subset of LS to be defined in M

42



Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

43



Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

43



Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

43



Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

43



Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

43



Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

43



Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

43



Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

43



Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

43



Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

43



Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

43



Correctness Results

Correctness results can be extended to the new rule.

Soundness: The new T -Learn rule maintains satisfiability of the
clause set.

Completeness: As long as the theory solver can decide M |=T ⊥
when all literals in LS are determined, the system is still complete.

Termination: The system terminates under the same conditions as
before. Roughly:

• Any lemma is (re)learned only finitely many times

• Restart is applied with increased periodicity

44



45



Suggested Readings

1. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:
From an abstract Davis-Putnam-Logemann- Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937-977, 2006.

2. R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean
Modeling and Computation 3:141-224, 2007.

3. S. Krstić and A. Goel. Architecting Solvers for SAT Modulo Theories: Nelson-Oppen
with DPLL. In Proceeding of the Symposium on Frontiers of Combining Systems
(FroCoS’07). Volume 4720 of LNCS. Springer, 2007.

4. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo Theories. In
Handbook of Satisfiability. IOS Press, 2009.

45



References

[ABC+02] Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Korniłowicz, and Roberto Sebastiani.

A SAT-based approach for solving formulas over boolean and linear mathematical propositions.
In Andrei Voronkov, editor, Proceedings of the 18th International Conference on Automated
Deduction, volume 2392 of Lecture Notes in Artificial Intelligence, pages 195–210. Springer, 2002

[ACG00] Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. SAT-based procedures for temporal
reasoning.
In S. Biundo and M. Fox, editors, Proceedings of the 5th European Conference on Planning (Durham,
UK), volume 1809 of Lecture Notes in Computer Science, pages 97–108. Springer, 2000

[AMP06] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded model checking of software
using SMT solvers instead of SAT solvers.
In Proceedings of the 13th International SPIN Workshop on Model Checking of Software (SPIN’06),
volume 3925 of Lecture Notes in Computer Science, pages 146–162. Springer, 2006

[Bar02] Clark W. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations of First-Order
Theories.
PhD dissertation, Department of Computer Science, Stanford University, Stanford, CA, Sep 2002

46



References

[BB09] R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays.
In S. Kowalewski and A. Philippou, editors, 15th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’05, volume 5505 of Lecture Notes in Computer
Science, pages 174–177. Springer, 2009

[BBC+05a] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R. Sebastiani. An
incremental and layered procedure for the satisfiability of linear arithmetic logic.
In Tools and Algorithms for the Construction and Analysis of Systems, 11th Int. Conf., (TACAS),
volume 3440 of Lecture Notes in Computer Science, pages 317–333, 2005

[BBC+05b] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Silvio Ranise, Roberto

Sebastiani, and Peter van Rossu. Efficient satisfiability modulo theories via delayed theory
combination.
In K.Etessami and S. Rajamani, editors, Proceedings of the 17th International Conference on
Computer Aided Verification, volume 3576 of Lecture Notes in Computer Science, pages 335–349.
Springer, 2005

47



References

[BCF+07] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, Ziyad Hanna, Alexander

Nadel, Amit Palti, and Roberto Sebastiani. A lazy and layered SMT(BV) solver for hard industrial
verification problems.
In Werner Damm and Holger Hermanns, editors, Proceedings of the 19th International Conference
on Computer Aided Verification, volume 4590 of Lecture Notes in Computer Science, pages 547–560.
Springer-Verlag, July 2007

[BCLZ04] Thomas Ball, Byron Cook, Shuvendu K. Lahiri, and Lintao Zhang. Zapato: Automatic theorem
proving for predicate abstraction refinement.
In R. Alur and D. Peled, editors, Proceedings of the 16th International Conference on Computer Aided
Verification, volume 3114 of Lecture Notes in Computer Science, pages 457–461. Springer, 2004

[BD94] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor control.
In Procs. 6th Int. Conf. Computer Aided Verification (CAV), LNCS 818, pages 68–80, 1994

[BDS02] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of first-order formulas by
incremental translation to SAT.
In J. C. Godskesen, editor, Proceedings of the International Conference on Computer-Aided
Verification, Lecture Notes in Computer Science, 2002

48



References

[BGV01] R. E. Bryant, S. M. German, and M. N. Velev. Processor Verification Using Efficient Reductions of
the Logic of Uninterpreted Functions to Propositional Logic.
ACM Transactions on Computational Logic, TOCL, 2(1):93–134, 2001

[BLNM+09] C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodríguez-Carbonell, and A. Rubio. Solving
Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic.
In R. A. Schmidt, editor, 22nd International Conference on Automated Deduction , CADE-22, volume
5663 of Lecture Notes in Computer Science, pages 294–305. Springer, 2009

[BLS02] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Deciding CLU logic formulas via
boolean and pseudo-boolean encodings.
In Proc. Intl. Workshop on Constraints in Formal Verification, 2002

[BNO+08a] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. A Write-Based
Solver for SAT Modulo the Theory of Arrays.
In Formal Methods in Computer-Aided Design, FMCAD, pages 1–8, 2008

[BNO+08b] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert Rubio.

The Barcelogic SMT solver.
In Computer-aided Verification (CAV), volume 5123 of Lecture Notes in Computer Science, pages
294–298. Springer, 2008

49



References

[BNOT06] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting on demand in sat
modulo theories.
In M. Hermann and A. Voronkov, editors, Proceedings of the 13th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning (LPAR’06), Phnom Penh, Cambodia, volume
4246 of Lecture Notes in Computer Science, pages 512–526. Springer, 2006

[BV02] R. E. Bryant and M. N. Velev. Boolean Satisfiability with Transitivity Constraints.
ACM Transactions on Computational Logic, TOCL, 3(4):604–627, 2002

[CKSY04] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Predicate abstraction of
ANSI–C programs using SAT.
Formal Methods in System Design (FMSD), 25:105–127, September–November 2004

[CM06] S. Cotton and O. Maler. Fast and Flexible Difference Constraint Propagation for DPLL(T).
In A. Biere and C. P. Gomes, editors, 9th International Conference on Theory and Applications of
Satisfiability Testing, SAT’06, volume 4121 of Lecture Notes in Computer Science, pages 170–183.
Springer, 2006

50



References

[DdM06] Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver for DPLL(T).
In T. Ball and R. B. Jones, editors, 18th International Conference on Computer Aided Verification,
CAV’06, volume 4144 of Lecture Notes in Computer Science, pages 81–94. Springer, 2006

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, July 1962

[dMB09] L. de Moura and N. Bjørner. Generalized, efficient array decision procedures.
In 9th International Conference on Formal Methods in Computer-Aided Design, FMCAD 2009, pages
45–52. IEEE, 2009

[dMR02] L. de Moura and H. Rueß. Lemmas on Demand for Satisfiability Solvers.
In 5th International Conference on Theory and Applications of Satisfiability Testing, SAT’02, pages
244–251, 2002

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, July 1960

[FLL+02] C. Flanagan, K. R. M Leino, M. Lillibridge, G. Nelson, and J. B. Saxe. Extended static checking for
Java.
In Proc. ACM Conference on Programming Language Design and Implementation, pages 234–245,
June 2002

51



References

[GHN+04] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.

DPLL(T): Fast decision procedures.
In R. Alur and D. Peled, editors, Proceedings of the 16th International Conference on Computer
Aided Verification, CAV’04 (Boston, Massachusetts), volume 3114 of Lecture Notes in Computer
Science, pages 175–188. Springer, 2004

[HBJ+14] Liana Hadarean, Clark Barrett, Dejan Jovanović, Cesare Tinelli, and Kshitij Bansal. A tale of two
solvers: Eager and lazy approaches to bit-vectors.
In Armin Biere and Roderick Bloem, editors, Proceedings of the 26th International Conference on
Computer Aided Verification (CAV ’14), volume 8559 of Lecture Notes in Computer Science, pages
680–695. Springer, July 2014

[HT08] George Hagen and Cesare Tinelli. Scaling up the formal verification of Lustre programs with
SMT-based techniques.
In A. Cimatti and R. Jones, editors, Proceedings of the 8th International Conference on Formal
Methods in Computer-Aided Design (FMCAV’08), Portland, Oregon, pages 109–117. IEEE, 2008

[JdM12] Dejan Jovanović and Leonardo de Moura. Solving Non-linear Arithmetic.
In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, 6th International Joint Conference on
Automated Reasoning (IJCAR ’12), volume 7364 of Lecture Notes in Computer Science, pages
339–354. Springer, 2012

[JB10] Dejan Jovanović and Clark Barrett. Polite theories revisited.
In Chris Fermüller and Andrei Voronkov, editors, Proceedings of the 17th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, volume 6397 of Lecture Notes in
Computer Science, pages 402–416. Springer-Verlag, 2010

[KG07] Sava Krstić and Amit Goel. Architecting solvers for SAT modulo theories: Nelson-Oppen with DPLL.

In B. Konev and F. Wolter, editors, Proceeding of the Symposium on Frontiers of Combining Systems
(Liverpool, England), volume 4720 of Lecture Notes in Computer Science, pages 1–27. Springer, 2007 52



References

[LM05] Shuvendu K. Lahiri and Madanlal Musuvathi. An Efficient Decision Procedure for UTVPI
Constraints.
In B. Gramlich, editor, 5th International Workshop on Frontiers of Combining Systems, FroCos’05,
volume 3717 of Lecture Notes in Computer Science, pages 168–183. Springer, 2005

[LNO06] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for Fast Predicate Abstraction.
In T. Ball and R. B. Jones, editors, 18th International Conference on Computer Aided Verification,
CAV’06, volume 4144 of Lecture Notes in Computer Science, pages 413–426. Springer, 2006

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245–257, October 1979

[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure.
Journal of the ACM, 27(2):356–364, 1980

[NO05] Robert Nieuwenhuis and Albert Oliveras. DPLL(T) with Exhaustive Theory Propagation and its
Application to Difference Logic.
In Kousha Etessami and Sriram K. Rajamani, editors, Proceedings of the 17th International
Conference on Computer Aided Verification, CAV’05 (Edimburgh, Scotland), volume 3576 of Lecture
Notes in Computer Science, pages 321–334. Springer, July 2005

53



References

[NO07] R. Nieuwenhuis and A. Oliveras. Fast Congruence Closure and Extensions.
Information and Computation, IC, 2005(4):557–580, 2007

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories:
from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, November 2006

[Opp80] Derek C. Oppen. Complexity, convexity and combinations of theories.
Theoretical Computer Science, 12:291–302, 1980

[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding Equality Formulas by Small Domains
Instantiations.
In N. Halbwachs and D. Peled, editors, 11th International Conference on Computer Aided
Verification, CAV’99, volume 1633 of Lecture Notes in Computer Science, pages 455–469. Springer,
1999

[Rin96] Christophe Ringeissen. Cooperation of decision procedures for the satisfiability problem.
In F. Baader and K.U. Schulz, editors, Frontiers of Combining Systems: Proceedings of the 1st
International Workshop, Munich (Germany), Applied Logic, pages 121–140. Kluwer Academic
Publishers, March 1996

54



References

[RRZ05] Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Combining data structures with
nonstably infinite theories using many-sorted logic.
In B. Gramlich, editor, Proceedings of the Workshop on Frontiers of Combining Systems, volume
3717 of Lecture Notes in Computer Science, pages 48–64. Springer, 2005

[SBDL01] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A Decision Procedure for an Extensional Theory
of Arrays.
In 16th Annual IEEE Symposium on Logic in Computer Science, LICS’01, pages 29–37. IEEE
Computer Society, 2001

[Sha02] Natarajan Shankar. Little engines of proof.
In Lars-Henrik Eriksson and Peter A. Lindsay, editors, FME 2002: Formal Methods - Getting IT
Right, Proceedings of the International Symposium of Formal Methods Europe (Copenhagen,
Denmark), volume 2391 of Lecture Notes in Computer Science, pages 1–20. Springer, July 2002

[SLB03] Sanjit A. Seshia, Shuvendu K. Lahiri, and Randal E. Bryant. A hybrid SAT-based decision procedure
for separation logic with uninterpreted functions.
In Proc. 40th Design Automation Conference, pages 425–430. ACM Press, 2003

[SSB02] O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding Separation Formulas with SAT.
In E. Brinksma and K. G. Larsen, editors, 14th International Conference on Computer Aided
Verification, CAV’02, volume 2404 of Lecture Notes in Computer Science, pages 209–222. Springer,
2002

55



References

[TdH08] N. Tillmann and J. de Halleux. Pex-White Box Test Generation for .NET.
In B. Beckert and R. Hähnle, editors, 2nd International Conference on Tests and Proofs, TAP’08,
volume 4966 of Lecture Notes in Computer Science, pages 134–153. Springer, 2008

[TH96] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson–Oppen combination
procedure.
In F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems: Proceedings of the 1st
International Workshop (Munich, Germany), Applied Logic, pages 103–120. Kluwer Academic
Publishers, March 1996

[Tin02] C. Tinelli. A DPLL-based calculus for ground satisfiability modulo theories.
In G. Ianni and S. Flesca, editors, Proceedings of the 8th European Conference on Logics in Artificial
Intelligence (Cosenza, Italy), volume 2424 of Lecture Notes in Artificial Intelligence. Springer, 2002

[TZ05] Cesare Tinelli and Calogero Zarba. Combining nonstably infinite theories.
Journal of Automated Reasoning, 34(3):209–238, April 2005

56



References

[WIGG05] C. Wang, F. Ivancic, M. K. Ganai, and A. Gupta. Deciding Separation Logic Formulae by SAT and
Incremental Negative Cycle Elimination.
In G. Sutcliffe and A. Voronkov, editors, 12h International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, LPAR’05, volume 3835 of Lecture Notes in Computer Science,
pages 322–336. Springer, 2005

[ZM10] Harald Zankl and Aart Middeldorp. Satisfiability of Non-linear (Ir)rational Arithmetic.
In Edmund M. Clarke and Andrei Voronkov, editors, 16th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, LPAR’10, volume 6355 of Lecture Notes in
Computer Science, pages 481–500. Springer, 2010

57


	Main Talk
	Introduction
	DPLL(T): Combining T-Solvers with SAT


