
Satisfiability Modulo Theories

Materials by Clark Barrett, Stanford University

CS357: October 2019

1



Acknowledgments: Many thanks to Cesare Tinelli and Albert Oliveras for
contributing some of the material used in these slides.

Disclamer: The literature on SMT and its applications is vast. The
bibliographic references provided here are just a sample. Apologies to all
authors whose work is not cited.

2



Introduction



The Satisfiability Revolution

Princeton, c. 2000

• Chaff SAT solver: orders of magnitude faster than previous SAT
solvers

• Important observation: many real-world problems do not exhibit
worst-case theoretical performance

Palo Alto, c. 2001

• Idea: combine fast new SAT solvers with decision procedures for
decidable first-order theories

• SVC, CVC solvers (Stanford); ICS, Yices solvers (SRI)

• Satisfiability Modulo Theories (SMT) was born
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SMT solvers

SMT solvers: general-purpose logic engines

• Given condition X , is it possible for Y to happen

• X and Y are expressed in a rich logical language
• First-order logic
• Domain-specific reasoning

• arithmetic, arrays, bit-vectors, data types, etc.

SMT solvers are changing the way people solve problems

• Instead of building a special-purpose solver

• Translate into a logical formula and use an SMT solver

• Not only easier, often better
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SMT Solvers
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SMT Solvers

5

SAT Solver
• Only sees Boolean skeleton

of problem

• Builds partial model by
assigning truth values to
literals

• Sends these literals to the
core as assertions



SMT Solvers
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Core
• Sends each assertion to the

appropriate theory

• Sends deduced literals to
other theories/SAT solver

• Handles theory combination



SMT Solvers
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Theory Solvers
• Decide T -satisfiability of a

conjunction of theory literals

• Incremental

• Backtrackable

• Conflict Generation

• Theory Propagation



DPLL(T ): Combining T -Solvers with SAT



Satisfiability Modulo a Theory T

Def. A formula is (un)satisfiable in a theory T , or T -(un)satisfiable, if
there is a (no) model of T that satisfies it

Note: The T -satisfiability of quantifier-free formulas is decidable iff
the T -satisfiability of conjunctions/sets of literals is decidable

(Convert the formula in DNF and check if any of its disjuncts is T -sat)

Problem: In practice, dealing with Boolean combinations of literals
is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology
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Lifting SAT Technology to SMT

Two main approaches:

1. “Eager” [PRSS99, SSB02, SLB03, BGV01, BV02]

• translate into an equisatisfiable propositional formula
• feed it to any SAT solver

Notable systems: UCLID

2. “Lazy” [ACG00, dMR02, BDS02, ABC+02]

• abstract the input formula to a propositional one
• feed it to a (DPLL-based) SAT solver
• use a theory decision procedure to refine the formula and guide

the SAT solver

Notable systems: Barcelogic, Boolector, CVC4, MathSAT, Yices, Z3

This talk will focus on the lazy approach 7
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(Very) Lazy Approach for SMT – Example

g(a) = c ∧ f(g(a)) 6= f(c) ∨ g(a) = d ∧ c 6= d

Theory T : Equality with Uninterpreted Functions

Simplest setting:

• Off-line SAT solver
• Non-incremental theory solver for conjunctions of equalities and

disequalities
• Theory atoms (e.g., g(a) = c) abstracted to propositional atoms

(e.g., 1)
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(Very) Lazy Approach for SMT – Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

• Send {1, 2 ∨ 3, 4} to SAT solver.

• SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.

• SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

• Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

• SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.
Done: the original formula is unsatisfiable in UF.
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Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

• Check T -satisfiability of partial assignment M as it grows

•
• If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of

M and add ¬M0 as a clause

•
• If M is T -unsatisfiable, backtrack to some point where the

assignment was still T -satisfiable
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Lazy Approach – Main Benefits

• Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

• The theory solver works only with conjunctions of literals

• Modular approach:

• SAT and theory solvers communicate via a simple API [GHN+04]

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT
system with few new lines of code (tens)
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An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled abstractly and declaratively as transition
systems

A transition system is a binary relation over states, induced by a set of
conditional transition rules

The framework can be first developed for SAT and then extended to
lazy SMT [NOT06, KG07]
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Advantages of Abstract Framework

An abstract framework helps one:

• skip over implementation details and unimportant control aspects

• reason formally about solvers for SAT and SMT

• model advanced features such as non-chronological bactracking,
lemma learning, theory propagation, . . .

• describe different strategies and prove their correctness

• compare different systems at a higher level

• get new insights for further enhancements

The one described next is a re-elaboration of those in [NOT06, KG07]
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The Original DPLL Procedure

• Modern SAT solvers are based on the DPLL
procedure [DP60, DLL62]

• DPLL tries to build incrementally a satisfying truth assignment
M for a CNF formula F

• M is grown by
• deducing the truth value of a literal from M and F , or
• guessing a truth value

• If a wrong guess for a literal leads to an inconsistency, the
procedure backtracks and tries the opposite value

14



An Abstract Framework for DPLL

States:

fail or 〈M,F 〉

where

• M is a sequence of literals and decision points •
denoting a partial truth assignment

• F is a set of clauses denoting a CNF formula

Def. If M = M0 •M1 • · · · •Mn where each Mi contains no decision points

• Mi is decision level i of M

• M [i] def
= M0 • · · · •Mi
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An Abstract Framework for DPLL

States:

fail or 〈M,F 〉

Initial state:

• 〈(), F0〉, where F0 is to be checked for satisfiability

Expected final states:

• fail if F0 is unsatisfiable

• 〈M,G〉 otherwise, where
• G is equivalent to F0 and
• M satisfies G
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Transition Rules: Notation

States treated like records:

• M denotes the truth assignment component of current state

• F denotes the formula component of current state

Transition rules in guarded assignment form [KG07]

p1 · · · pn

[M := e1] [F := e2]

updating M, F or both when premises p1, . . . , pn all hold

16



Transition Rules for the Original DPLL

Extending the assignment

Propagate
l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l, l /∈ M

M := M l

Note: When convenient, treat M as a set

Decide
l ∈ Lit(F) l, l /∈ M

M := M • l

Note: Lit(F )
def
= {l | l literal of F} ∪ {l | l literal of F}
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Transition Rules for the Original DPLL

Repairing the assignment

Fail
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail

Backtrack

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N

M := M l

Note: Last premise of Backtrack enforces chronological backtracking
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From DPLL to CDCL Solvers (1)

To model conflict-driven backjumping and learning, add to states a
third component C whose value is either no or a conflict clause

States: fail or 〈M,F,C〉

Initial state:

• 〈(), F0, no〉, where F0 is to be checked for satisfiability

Expected final states:

• fail if F0 is unsatisfiable
• 〈M,G, no〉 otherwise, where

• G is equivalent to F0 and
• M satisfies G

19
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From DPLL to CDCL Solvers (2)

Replace Backtrack with

Conflict
C = no l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := l1 ∨ · · · ∨ ln

Explain
C = l ∨D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Backjump
C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M := M[i] l

Maintain invariant: F |=p C and M |=p ¬C when C 6= no

Note: |=p denotes propositional entailment

20



From DPLL to CDCL Solvers (2)

Replace Backtrack with

Conflict
C = no l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := l1 ∨ · · · ∨ ln

Explain
C = l ∨D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Backjump
C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M := M[i] l

Note: l ≺M l′ if l occurs before l′ in M

lev l = i iff l occurs in decision level i of M

Maintain invariant: F |=p C and M |=p ¬C when C 6= no

Note: |=p denotes propositional entailment
20



From DPLL to CDCL Solvers (2)

Replace Backtrack with

Conflict
C = no l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := l1 ∨ · · · ∨ ln

Explain
C = l ∨D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Backjump
C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M := M[i] l

Maintain invariant: F |=p C and M |=p ¬C when C 6= no

Note: |=p denotes propositional entailment
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From DPLL to CDCL Solvers (3)

Modify Fail to

Fail
C 6= no • /∈ M

fail
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Modify Fail to

Fail
C 6= no • /∈ M

fail
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Execution Example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·
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From DPLL to CDCL Solvers (4)

Also add

Learn
F |=p C C /∈ F

F := F ∪ {C}

Forget
C = no F = G ∪ {C} G |=p C

F := G

Restart
M := M[0] C := no

Note: Learn can be applied to any clause stored in C when C 6= no
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Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the
transition system with rules

Propagate, Decide,

Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic DPLL def
=

{ Propagate, Decide, Conflict, Explain, Backjump }

DPLL def
= Basic DPLL + { Learn, Forget, Restart }
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The Basic DPLL System – Correctness

Some terminology:

Irreducible state: state for which no Basic DPLL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution starting with
F = F0 and ending with fail, the clause set F0 is unsatisfiable.

Proposition (Completeness) For every exhausted execution starting
with F = F0 and ending with C = no, the clause set F0 is satisfied by
M.
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The DPLL System – Strategies

• Applying
• one Basic DPLL rule between each two Learn applications and
• Restart less and less often

ensures termination

• A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide
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From SAT to SMT

Same states and transitions but

• F contains quantifier-free clauses in some theory T

• M is a sequence of theory literals and decision points

• the DPLL system is augmented with rules

T -Conflict, T -Propagate, T -Explain

• maintains invariant: F |=T C and M |=p ¬C when C 6= no

Def. F |=T G iff every model of T that satisfies F satisfies G as well
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SMT-level Rules

Fix a theory T

T -Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥

C := l1 ∨ · · · ∨ ln

T -Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T -Explain
C = l ∨D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Note: ⊥ = empty clause

Note: |=T decided by theory solver
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Modeling the Very Lazy Theory Approach

T -Conflict is enough to model the naive integration of SAT solvers
and theory solvers seen in the earlier UF example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T -Conflict
1 4 • 2 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T -Conflict,Learn

fail by Fail
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A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T -solver,
which can

1. check the T -satisfiability of M as it is extended and
2. identify a small T -unsatisfiable subset of M once M becomes

T -unsatisfiable
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Lazy Approach – Strategies

Ignoring Restart (for simplicity), a common strategy is to apply the
rules using the following priorities:

1. If a clause is falsified by the current assignment M,
apply Conflict

2. If M is T -unsatisfiable, apply T -Conflict

3. Apply Fail or Explain+Learn+Backjump as appropriate

4. Apply Propagate

5. Apply Decide

Note: Depending on the cost of checking the T -satisfiability of M,
Step (2) can be applied with lower frequency or priority
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Theory Propagation

With T -Conflict as the only theory rule, the theory solver is used just
to validate the choices of the SAT engine

With T -Propagate and T -Explain, it can also be used to guide the
engine’s search [Tin02]

T -Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T -Explain
C = l ∨D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D
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Theory Propagation Example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) 6= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c 6= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T -Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T -Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict

fail by Fail

Note: T -propagation eliminates search altogether in this case
no applications of Decide are needed
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Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the
transition system with rules

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T -Conflict, T -Propagate, T -Explain

(3) Learn, Forget, Restart

Basic DPLL Modulo Theories def
= (1) + (2)

DPLL Modulo Theories def
= (1) + (2) + (3)

35



Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the
transition system with rules

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T -Conflict, T -Propagate, T -Explain

(3) Learn, Forget, Restart

Basic DPLL Modulo Theories def
= (1) + (2)

DPLL Modulo Theories def
= (1) + (2) + (3)

35



Correctness

Updated terminology:

Irreducible state: state to which no Basic DPLL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution starting with
F = F0 and ending with fail, the clause set F0 is T -unsatisfiable.

Proposition (Completeness) For every exhausted execution starting
with F = F0 and ending with C = no, F0 is T -satisfiable; specifically,
M is T -satisfiable and M |=p F0.
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Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity

is finite.

Lemma Every exhausted execution ends with either C = no or fail.
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DPLL(T ) Architecture

The approach formalized so far can be implemented with a simple
architecture named DPLL(T ) [GHN+04, NOT06]

DPLL(T ) = DPLL(X) engine + T -solver
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The approach formalized so far can be implemented with a simple
architecture named DPLL(T ) [GHN+04, NOT06]

DPLL(T ) = DPLL(X) engine + T -solver

DPLL(X):

• Very similar to a SAT solver, enumerates Boolean models

• Not allowed: pure literal, blocked literal detection, ...

• Required: incremental addition of clauses

• Desirable: partial model detection
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DPLL(T ) Architecture

The approach formalized so far can be implemented with a simple
architecture named DPLL(T ) [GHN+04, NOT06]

DPLL(T ) = DPLL(X) engine + T -solver

T -solver:

• Checks the T -satisfiability of conjunctions of literals

• Computes theory propagations

• Produces explanations of T -unsatisfiability/propagation

• Must be incremental and backtrackable
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Reasoning by Cases in Theory Solvers

For certain theories, determining that a set M is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) 6= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) 6= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i 6= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T -unsatisfiable
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requires reasoning by cases.
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Case Splitting

A complete T -solver reasons by cases via (internal) case splitting and
backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T -solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send them as
needed to the SAT engine for it to split on them [BNOT06]

Possible benefits:

• All case-splitting is coordinated by the SAT engine

• Only have to implement case-splitting infrastructure in one place

• Can learn a wider class of lemmas
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Splitting on Demand

Basic idea: encode case splits as a set of clauses and send them as
needed to the SAT engine for it to split on them

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)︸ ︷︷ ︸
s′

, . . .}

• Main SMT module: “Is M T -unsatisfiable?”

• T -solver: “I do not know yet, but it will help me if you consider
these theory lemmas:

s = s′ ∧ i = j → s = t, s = s′ ∧ i 6= j → s = r(a, j) ”
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Modeling Splitting on Demand

To model the generation of theory lemmas for case splits, add the rule

T -Learn

|=T ∃v(l1 ∨ · · · ∨ ln) l1, . . . , ln ∈ LS v vars not in F

F := F ∪ {l1 ∨ · · · ∨ ln}

where LS is a finite set of literals dependent on the initial set of
clauses (see [BNOT06] for a formal definition of LS)

Note: For many theories with a theory solver, there exists
an appropriate finite LS for every input F

The set LS does not need to be computed explicitly

41



Modeling Splitting on Demand

To model the generation of theory lemmas for case splits, add the rule

T -Learn

|=T ∃v(l1 ∨ · · · ∨ ln) l1, . . . , ln ∈ LS v vars not in F

F := F ∪ {l1 ∨ · · · ∨ ln}

where LS is a finite set of literals dependent on the initial set of
clauses (see [BNOT06] for a formal definition of LS)

Note: For many theories with a theory solver, there exists
an appropriate finite LS for every input F

The set LS does not need to be computed explicitly

41



Modeling Splitting on Demand

Now we can relax the requirement on the theory solver:

When M |=p F, it must either

• determine whether M |=T ⊥ or
• generate a new clause by T -Learn containing

at least one literal of LS undefined in M

The T -solver is required to determine whether M |=T ⊥ only if all
literals in LS are defined in M

Note: In practice, to determine if M |=T ⊥, the T -solver only needs
a small subset of LS to be defined in M
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Example — Theory of Finite Sets

F : x = y ∪ z ∧ y 6= ∅ ∨ x 6= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x 6= z F by Propagate
x = y ∪ z • y = ∅ x 6= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T -Learn

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)
x = y ∪ z • y = ∅ x 6= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e 6∈ x ∨ e 6∈ z)

T -solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T -Conflict with clause

x 6= y ∪ z ∨ y 6= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z
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Correctness Results

Correctness results can be extended to the new rule.

Soundness: The new T -Learn rule maintains satisfiability of the
clause set.

Completeness: As long as the theory solver can decide M |=T ⊥
when all literals in LS are determined, the system is still complete.

Termination: The system terminates under the same conditions as
before. Roughly:

• Any lemma is (re)learned only finitely many times

• Restart is applied with increased periodicity
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