Model Checking

An Overview

Goals

Vocabulary

Modeling

Specification

High-level understanding of algorithms

Outline

- What is Model Checking?
 - Modeling: Transition Systems
 - Specification: Linear Temporal Logic
- Historical Verification Approaches
 - Explicit-state
 - BDDs
- SAT/SMT-based Verification Approaches
 - Bounded Model Checking
 - K-Induction
- Inductive Invariants

Motivation

- Safety-critical systems
 - Airplanes
 - Space shuttles
 - Railways
- Expensive mistakes
 - Chip design
 - Critical software
- Want to guarantee safe behavior over unbounded time

What is Model Checking?

- An approach for verifying the temporal behavior of a system
- Primarily fully-automated ("push-button") techniques
- Model
 - Representation of the system
 - Need to decide the right level of granularity
- Specification
 - High-level desired property of system
- Considers infinite sequences
- PSPACE-complete for FSMs

Modeling: Transition Systems

- Model checking typically operates over Transition Systems
 - A (symbolic) state machine

- A Transition System is (S, I, T)
 - S: a set of states
 - I: a set of initial states (sometimes use Init instead of I for clarity)
 - T: a transition relation: $T \subseteq S \times S$
 - $T(s_0, s_1)$ holds when there is a transition from s_0 to s_1

Symbolic Transition Systems in Practice

- States are made up of state variables $v \in V$
 - A state is an assignment to all variables
- A Transition System is (V, I, T)
 - V: a set of state variables, V' denotes next state variables
 - I: a set of initial states
 - T: a transition relation
 - $T(v_0, ..., v_n, v'_0, ..., v'_n)$ holds when there is a transition
 - Note: will often still use s to denote symbolic states (just know they're made up of variables)
- Symbolic state machine is built by translating another representation
 - E.g. a program, a mathematical model, a hardware description, etc...

Symbolic Transition System Example

- 2 variables: $V = \{v_0, v_1\}$
 - $S_0 \coloneqq \neg v_0 \land \neg v_1, \quad S_1 \coloneqq \neg v_0 \land v_1$
 - $S_2 := v_0 \land \neg v_1$, $S_3 := v_0 \land v_1$
- Transition relation

$$(\neg v_0 \land \neg v_1) \Rightarrow ((\neg v_0' \land v_1') \lor (v_0' \land \neg v_1')) \land (\neg v_0 \land v_1) \Rightarrow (v_0' \land v_1') \land (v_0 \land \neg v_1) \Rightarrow (v_0' \land v_1') \land (v_0 \land v_1) \Rightarrow (v_0' \land v_1')$$

Modeling: Transition System Executions

An execution is a sequence of states that respects I in the first state and T between every adjacent pair

• $\pi := s_0 s_1 \dots s_n$ is a finite sequence if $I(s_0) \wedge \bigwedge_{i=1}^n T(s_{i-1}, s_i)$

Meta Note: State Machine vs Execution Diagrams

State Machine uses capitals

Symbolic execution uses lowercase

Concrete Execution:

s0=S0, s1=S2, s2=S3, s3=S3

Specification: Historical

- Original approaches considered equivalence only
 - Model M₁ implements model M₂ exactly
- Duality between model and specification
 - The specification is itself a model
 - But the big innovation is that it can be a partially specified model
 - And can have loose definitions of timing, e.g. something eventually happens
 - Specification is typically higher-level, abstract behavior
 - Language considerations
 - Specification language should be sufficiently different from the implementation language
 - i.e. can always prove that $M_1 \equiv M_1$, but that's useless

- Notation: $M \models f$
 - Transition System model, M, entails LTL property, f, for ALL possible paths
 - i.e. LTL is implicitly universally quantified
- Other logics include
 - CTL: computational tree logic (branching time)
 - CTL*: combination of LTL and CTL
 - MTL: metric temporal logic (for regions of time)

- State formula $P \subseteq S$:
 - Holds iff $s_0 \in P$
- X operator: X(P)
 - Next time
 - Holds iff the next state meets property P
- G operator: G(P)
 - Globally holds
 - True iff every reachable state meets property P

- F operator: F(P)
 - Finally
 - True iff P eventually holds

U operator: P1 U P2

- True iff P1 holds up until (but not necessarily including) a state where P2 holds
- P2 must hold at some point

- LTL operators can be composed
 - $G(Req \Rightarrow F(Ack))$
 - Every request eventually acknowledged
 - G(F(DeviceEnabled))
 - The device is enabled infinitely often (from every state, it's eventually enabled again)
 - $F(G(\neg Initializing))$
 - Eventually it's not initializing
 - E.g. there is some initialization procedure that eventually ends and never restarts

Specification Safety vs. Liveness

- Safety: "something bad does not happen"
 - State invariant, e.g. $G(\neg bad)$
- Liveness: "something good eventually happens"
 - Eventuality, e.g. GF(good)
- Fairness conditions
 - Fair traces satisfy each of the fairness conditions infinitely often
 - E.g. only fair if it doesn't delay acknowledging a request forever
- Every property can be written as a conjunction of a safety and liveness property

Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters, 21(4):181–185, October 1985.

Specification: Liveness to Safety

- Can reduce liveness to safety checking by modifying the system
- For SAT-based:

Armin Biere, Cyrille Artho, Viktor Schuppan. Liveness Checking as Safety Checking, Electronic Notes in Theoretical Computer Science. 2002

Several approaches for first-order logic

From now on, we consider only safety properties

Historical Verification Approaches: Explicit State

Tableaux-style state exploration

Form of depth-first search

Many clever tricks for reducing search space

Big contribution is handling temporal logics (including branching time)

Historical Verification Approaches: BDDs

- Binary Decision Diagrams (BDDs)
 - Manipulate sets of states symbolically

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic Model Checking: 10²⁰ States and beyond

- Great BDD resource
 - http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/somenzi99bdd.pdf

Historical Verification Approaches: BDDs

- Represent Boolean formula as a decision diagram
- Example: $(x_1 \land x_2) \lor (x_3 \land x_4)$
- Can be much more succinct than other representations

BDDs: Cofactoring

 x_1

F

 χ_4

 x_3

F

 χ_2

• $f|_{\neg x_2}$ for BDD f is fixing x_2 to be negative

Redirect incoming edges

to assignment (F)

After reduction

Credit for Example: <u>Introduction to Formal Hardware Verification</u> – Thomas Kropf

BDD Operators

- Negation
 - Swap leaves (F → T)
- AND
 - All Boolean operators implemented recursively
- These two operators are sufficient

Fig. 2-7. AND-Operation between $x_1 \lor x_2$ and $x_2 \neg x_3$

BDD Image Computation

- Current reachable states are BDD R
 - Over variable set V
- Compute next states with:
 - $N := \exists V T(V, V') \land R(V)$
 - Existential is cofactoring: $\exists x \ f(x) \coloneqq (x \land f|_x) \lor (\neg x \land f|_{\neg x})$
 - aka Shannon Expansion
- Grow reachable states
 - $R = R \vee N[V'/V]$
 - Map next-state variables to current state, then add to reachable states

BDD-based model checking

• Start with R = Init

Keep computing image and growing reachable states

Stop when there's a fixpoint (reachable states not growing)

- Can handle ~10²⁰ states
 - More with abstraction techniques and compositional model checking

BDD: Variable Ordering

- Good variable orderings can be exponentially more compact
 - Finding a good ordering is NP-complete

There are formulas that have no non-exponential ordering: multipliers

Good variable ordering $\ ^{\Box}$

SAT-based model checking

- Edmund Clarke
 - One of the founders of model checking
- SAT solving taking off
- Clarke hired several post-doctoral students to try to use SAT as an oracle to solve model checking problems
- Struggled for a while to find a general technique
 - What if you give up completeness? → Bounded Model Checking

Armin Biere, Alessandro Cimatti, Edmund Clarke, Yunshan Zhu. Symbolic Model Checking without BDDs. TACAS 1999

Bounded Model Checking (BMC)

- Sacrifice completeness for quick bug-finding
- Unroll the transition system
 - Each variable $v \in V$ gets a new symbol for each time-step, e.g. v_k is v at time k
 - Space-Time duality: unrolls temporal behavior into space
- For increasing values of k, check:
 - $I(s_0) \wedge \bigwedge_{i=1}^k T(s_{i-1}, s_i) \wedge \neg P(s_k)$
- If it is ever SAT, return FALSE
 - Can construct a counter-example trace from the solver model

BMC Graphically

Bounded Model Checking: Completeness

- Completeness condition: reaching the diameter
 - Diameter: d
 - The depth needed to unroll to such that every possible state is reachable in *d* steps or less
 - Recurrence diameter: d_r
 - The depth such that *every* execution of the system of length $\geq d_r$ *must* revisit states
 - Can be exponentially larger than the diameter
 - $d_r \ge d$
- Very difficult to compute the diameter
 - Requires a quantifier: find d such that any state reachable at d+1 is also reachable in $\leq d$ steps

K-Induction

- Extends bounded model checking to be able to prove properties
- Based on the concept of (strong) mathematical induction
- For increasing values of k, check:
 - Base Case: $I(s_0) \wedge \bigwedge_{i=1}^k T(s_{i-1}, s_i) \wedge \neg P(s_k)$
 - Inductive Case: $\left(\bigwedge_{i=1}^k T(s_{i-1}, s_i) \wedge P(s_{i-1})\right) \wedge \neg P(s_k)$
 - If base case is SAT, return a counter-example
 - If inductive case is UNSAT, return TRUE
 - Otherwise, continue

Mary Sheeran, Satnam Singh, and Gunnar Stälmarck. Checking safety properties using induction and a SAT-solver. FMCAD 2000

K-Induction Graphically

Base Case

 s_0 must be an initial state

Arbitrary starting state s_0 such that $P(s_0)$ holds

K-Induction: Simple Path

- This approach can be complete over a finite domain
 - requires the simple path constraint
 - each state is distinct from other states in trace
- If simple path is UNSAT, then we can return true

-----: not equal

K-Induction: Simple Path

- This approach can be complete over a finite domain
 - requires the simple path constraint
 - each state is distinct from other states in trace
- If simple path is UNSAT, then we can return true

-----: not equal

Without simple path, inductive step could get:

K-Induction Observation

- Crucial observation
 - Does not depend on direct computation of reachable state space
- Beginning of "property directed" techniques
 - We do not need to know the exact reachable states, as long as we can guarantee they
 meet the property
 - "Property directed" is associated with a family of techniques that build inductive invariants automatically

Inductive Invariants

- The goal of most modern model checking algorithms
- Over finite-domain, just need to show that algorithm makes progress, and it will eventually find an inductive invariant
 - E.g. in the worst case, the reachable states are themselves an inductive invariant
 - Hopefully there's an easier to find inductive invariant that is sufficient
- Inductive Invariant: II
 - $Init(s) \Rightarrow II(s)$
 - $T(s,s') \wedge II(s) \Rightarrow II(s')$
 - $II(s) \Rightarrow P(s)$

Advanced: Relative Induction

- Inductive Invariant:
 - $a \ge 0 \land b \ge 0 \land c \ge 0$
- Incremental induction
 - Guess: $a \ge 0$
 - Induction: $c \ge 0$, relative to $a \ge 0$
 - Induction: $b \ge 0$, relative to $a \ge 0 \land c \ge 0$
 - Prove: $a \ge 0$
- Break circularity with induction

```
a = 0; b = 0; c = 0
while * do:
assert a \ge 0
a' = a + b
b' = b + c
c' = c + 1 + a
```

Advanced: Relative Induction

- Break circularity with induction
 - Guess $a \ge 0$
 - $Init = a \ge 0 \land c \ge 0$,
 - Relative Induction: $a \ge 0 \land c \ge 0 \models c' \ge 0$
 - $Init \models a \ge 0 \land c \ge 0 \land b \ge 0$
 - Induction: $a \ge 0 \land c \ge 0 \land b \ge 0 \models a' \ge 0 \land c' \ge 0 \land b' \ge 0$
- The last inductive proof is a complete proof
 - But obtaining the inductive invariant by first guessing $a \ge 0$, then finding $c \ge 0$ could be easier

```
a = 0; b = 0; c = 0
while * do:
assert a \ge 0
a' = a + b
b' = b + c
c' = c + 1 + a
```

Advanced Algorithms

- Interpolant-based model checking
 - Constructs an overapproximation of the reachable states
 - Terminates when it finds an inductive invariant or a counterexample
- IC3 / PDR
 - Computes over (under) approximations of forward (backward) reachable states
 - Refines approximations by guessing relative inductive invariants
 - Terminates when it finds an inductive invariant or a counterexample

Thank you!