Model Checking

Goals

Vocabulary

Modeling

Specification

High-level understanding of algorithms

Outline

What is Model Checking?
= Modeling: Transition Systems
= Specification: Linear Temporal Logic

Historical Verification Approaches

= Explicit-state

- BDDs

SAT/SMT-based Verification Approaches

= Bounded Model Checking
= K-Induction

Inductive Invariants

Motivation

= Safety-critical systems
= Airplanes
= Space shuttles
= Railways
= Expensive mistakes
= Chip design

= Critical software

= Want to guarantee safe behavior over
unbounded time

This Photo by Unknown Author is licensed under CC BY-SA
This Photo by Unknown Author is licensed under CC BY

http://www.creativity103.com/collections/Technology/slides/circuit_board.html
https://creativecommons.org/licenses/by/3.0/
http://en.wikipedia.org/wiki/File:Air_France_A380_F-HPJA.jpg
https://creativecommons.org/licenses/by-sa/3.0/

What is Model Checking?

An approach for verifying the temporal behavior of a system ‘

Primarily fully-automated (“push-button”) techniques

Model Model Checker

= Representation of the system
Proof
Example optional

= Need to decide the right level of granularity

Specification

= High-level desired property of system

Considers infinite sequences

PSPACE-complete for FSMs

Modeling: Transition Systems

= Model checking typically operates over Transition Systems

= A (symbolic) state machine

= A Transition System is (S,I,T)
= §: a set of states
= I: a set of initial states (sometimes use Init instead of I for clarity)

= T: atransition relation: T € S X S
= T(sy,s1) holds when there is a transition from s, to s,

Symbolic Transition Systems in Practice

= States are made up of state variables v € V

= A state is an assignment to all variables

= A Transition Systemis (V,I1,T)
= /. a set of state variables, V' denotes next state variables
= . a set of initial states
= T: a transition relation
= T(vg, .., Up, V4, -, Upy) holds when there is a transition
= Note: will often still use s to denote symbolic states (just know they’re made up of variables)

= Symbolic state machine is built by translating another representation

= E.g. a program, a mathematical model, a hardware description, etc...

Symbolic Transition System Example

= 2 variables: V = {v,, v}

" SO = V) AN —Vq, Sl = V) N\ V1

" SZ = 7Dy /_Ivl, 53 = Dy /\v1

= Transition relation
(29 A=) = ((vi AV V (W A=) A
(Avg Avy) = (Wi AV A
(g A —v1) = (Wi AV A
(vo Av1) = (Vg Avy)

Modeling: Transition System Executions

= An execution is a sequence of states that respects I in the first state and T
between every adjacent pair

= T =5y 5 ..Sy IS afinite sequence if I(sg) A Al=; T(Si—1, ;)

Meta Note: State Machine vs Execution
Diagrams

State Machine uses capitals Symbolic execution uses lowercase

0000

Concrete Execution:

s0=S0, s1=S2, s2=53, s3=S3

Specification: Historical

= QOriginal approaches considered equivalence only
= Model M; implements model M, exactly

= Duality between model and specification
= The specification is itself a model

= But the big innovation is that it can be a partially specified model
= And can have loose definitions of timing, e.g. something eventually happens

= Specification is typically higher-level, abstract behavior

= Language considerations
= Specification language should be sufficiently different from the implementation language
= |.e. can always prove that M; = M,, but that’s useless

Specification: Linear Temporal Logic

= Notation: M E f
= Transition System model, M, entails LTL property, f, for ALL possible paths

= l.e. LTL is implicitly universally quantified

= Other logics include
= CTL: computational tree logic (branching time)
= CTL*: combination of LTL and CTL

= MTL: metric temporal logic (for regions of time)

Specification: Linear Temporal Logic
- State formula P € S: e—a_“
- Holds iff s, € P

= Holds iff the next state meets property P

= G operator: G(P) Q—m

= Globally holds

= True iff every reachable state meets property P

= X operator: X(P)

= Next time

Specification: Linear Temporal Logic

= F operator: F(P) m 4°
= Finally

= True iff P eventually holds

= U operator: P1 U P2 M AQ‘@

= Until
= True iff P1 holds up until (but not necessarily including) a state where P2 holds

= P2 must hold at some point

Specification: Linear Temporal Logic

= LTL operators can be composed
g G(Req = F(Ack))

= Every request eventually acknowledged
« G(F(DeviceEnabled))

= The device is enabled infinitely often (from every state, it's eventually enabled again)
= F(G(~Initializing))

= Eventually it's not initializing

= E.g. there is some initialization procedure that eventually ends and never restarts

Specification Safety vs. Liveness

Safety: “something bad does not happen”
= State invariant, e.g. G(—bad)

Liveness: “something good eventually happens”
= Eventuality, e.g. GF(good)

Fairness conditions
= Fair traces satisfy each of the fairness conditions infinitely often
= E.g. only fair if it doesn’t delay acknowledging a request forever

Every property can be written as a conjunction of a safety and liveness property

Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181-185, October 1985.

Specification: Liveness to Safety

= Can reduce liveness to safety checking by modifying the system
= For SAT-based:

Armin Biere, Cyrille Artho, Viktor Schuppan. Liveness Checking as Safety Checking,
Electronic Notes in Theoretical Computer Science. 2002

= Several approaches for first-order logic

= From now on, we consider only safety properties

Historical Verification Approaches: Explicit State

= Tableaux-style state exploration
= Form of depth-first search
= Many clever tricks for reducing search space

= Big contribution is handling temporal logics (including branching time)

Historical Verification Approaches: BDDs

= Binary Decision Diagrams (BDDs)

= Manipulate sets of states symbolically

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic Model
Checking: 102° States and beyond

= Great BDD resource
= http://www.ecs.umass.edu/ece/labs/visicad/ece667/reading/somenzi99bdd.pdf

http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/somenzi99bdd.pdf

Historical Verification Approaches: BDDs

= Represent Boolean formula as a decision diagram
= Example: (x;Ax) V (x3 A xy)

= Can be much more succinct than other representations

Credit for Example: Introduction to Formal Hardware Verification — Thomas Kropf

BDDs: Cofactoring

Redirect incoming edges
to assignment (F)

* fl-x, for BDD f is fixing x, to be negative /

After reduction

Credit for Example: Introduction to Formal Hardware Verification — Thomas Kropf

BDD Operators

Index 1

= Negation

= Swap leaves (F 2> T)

= AND

= All Boolean operators implemented Index 2

recursively T A f@\
F F

T FlIF T
. o Reduction
= These two operators are sufficient
(2) (2)
Index 3 o o
F T F
F T F T F

F

Fig. 2-7. AND-Operation between x,vx, and x,—x;

Image Credit: Introduction to Formal Hardware Verification — Thomas Kropf

BDD Image Computation

= Current reachable states are BDD R

= Qver variable set IV

= Compute next states with:
« N := VTV, V)ARV)
= Existential is cofactoring: 3x f(x) = (x A fl,) V(=x A fl_y)
= aka Shannon Expansion
= Grow reachable states
- R=RVN[V'/V]

= Map next-state variables to current state, then add to reachable states

BDD-based model checking

Start with R = Init

Keep computing image and growing reachable states

Stop when there’s a fixpoint (reachable states not growing)

Can handle ~102° states

= More with abstraction techniques and compositional model checking

BDD: Variable Ordering

= Good variable orderings can be exponentially more compact

= Finding a good ordering is NP-complete

= There are formulas that have no non-exponential ordering: multipliers

BDD for the function f(x4, ..., Xg) = X1X2 + X3X4 + X5Xg + X7Xg using bad variable ordering o Good variable ordering o

Image Credit: https://en.wikipedia.org/wiki/Binary decision_diagram

https://en.wikipedia.org/wiki/Binary_decision_diagram

SAT-based model checking

Edmund Clarke

= One of the founders of model checking

SAT solving taking off

Clarke hired several post-doctoral students to try to use SAT as an oracle to solve
model checking problems

Struggled for a while to find a general technique
= What if you give up completeness? - Bounded Model Checking

Armin Biere, Alessandro Cimatti, Edmund Clarke, Yunshan Zhu. Symbolic Model
Checking without BDDs. TACAS 1999

Bounded Model Checking (BMC)

Sacrifice completeness for quick bug-finding

Unroll the transition system
= Each variable v € V gets a new symbol for each time-step, e.g. v is v at time k

= Space-Time duality: unrolls temporal behavior into space

For increasing values of k, check:
= 1(so) A Ni=1 T(si—1,5) A =P (sy)

If it IS ever SAT, return FALSE

= Can construct a counter-example trace from the solver model

BMC Graphically

I(SO) —|P(Sk)7
So Must be an initial state Check if it can violate the

property at time k

Bounded Model Checking: Completeness

= Completeness condition: reaching the diameter

= Diameter: d
= The depth needed to unroll to such that every possible state is reachable in d steps or less

= Recurrence diameter: d,
= The depth such that every execution of the system of length > d,- must revisit states
= Can be exponentially larger than the diameter

-d, >d

= Very difficult to compute the diameter

= Requires a quantifier: find d such that any state reachable at d + 1 is also reachable Iin
< d steps

K-Induction

= Extends bounded model checking to be able to prove properties
= Based on the concept of (strong) mathematical induction

= For increasing values of k, check:
= Base Case: I(sy) A /\}lf‘=1 T(s;_1,5;) NP (sy)
- Inductive Case: (AK; T(s;_1,5:) A P(si—1)) A =P(sy)
= If base case is SAT, return a counter-example
= If inductive case is UNSAT, return TRUE
= Otherwise, continue

Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. Checking safety properties using
induction and a SAT-solver. FMCAD 2000

K-Induction Graphically

I(SO) —|P(Sk)7

So Must be an initial state

P(So) P(Sl) P(Sz) P(Sk—l) —IP(Sk)7

Arbitrary starting state s,
such that P(s,) holds

K-Induction: Simple Path

= This approach can be complete over a finite
domain

= requires the simple path constraint

= each state is distinct from other states in trace

= If simple path is UNSAT, then we can return true

.............. > : not equal

K-Induction: Simple Path

= This approach can be complete over a finite Why?
domain

= requires the simple path constraint

= each state is distinct from other states in trace

= If simple path is UNSAT, then we can return true

.............. > : not equal

Without simple path, inductive step could get:

00 00

K-Induction Observation

= Crucial observation

= Does not depend on direct computation of reachable state space

= Beginning of “property directed” techniques

= We do not need to know the exact reachable states, as long as we can guarantee they
meet the property

= “Property directed” is associated with a family of techniques that build inductive
invariants automatically

Inductive Invariants

= The goal of most modern model checking algorithms

= Qver finite-domain, just need to show that algorithm makes progress, and it will
eventually find an inductive invariant

= E.g. in the worst case, the reachable states are themselves an inductive invariant

= Hopefully there’s an easier to find inductive invariant that is sufficient

= Inductive Invariant: /1 State Space
= Init(s) = I1(s) Property
= T(s,s") A1I(s) = 1I(s") Simple Inductive
- 1I(s) = P(s) Invariant

Advanced: Relative Induction

= |nductive Invariant:

=a>0Ab>=>0Ac=>0

= Incremental induction
= Guess: a =0
= Induction: ¢ = 0, relativetoa = 0
= Induction: b = 0, relativetoa = 0Ac =0

= Prove:a >0

= Break circularity with induction

a=0;b=0;c=0

while * do:
asserta=0
a=a+b
b'=b+c
c=c+1+a

Credit for Example: Oded Padon

a=0;b=0;c=0

while * do:
Advanced: Relative Induction asserta 2]
b’=b +c
= Break circularity with induction c=c+1+a

= Guessa =0

IniteEa=0Ac =0,

Relative Induction:a > 0Ac>0Ec¢ >0

nitEa=0Ac=>0Ab=>0

Induction:a>0Ac>0Ab>0Ead =>0A>0AD" >0

= The last inductive proof is a complete proof

= But obtaining the inductive invariant by first guessing a = 0, then finding ¢ = 0 could be
easier

Credit for Example: Oded Padon

Advanced Algorithms

= Interpolant-based model checking
= Constructs an overapproximation of the reachable states

= Terminates when it finds an inductive invariant or a counterexample

= |C3/PDR
= Computes over (under) approximations of forward (backward) reachable states
= Refines approximations by guessing relative inductive invariants

= Terminates when it finds an inductive invariant or a counterexample

Thank you!

