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Abstract DPLL uses states and transitions to model the progress of the
algorithm.
Most states are of the form M | F, where

» M is a sequence of annotated literals denoting a partial truth assignment,
and
» F is the CNF formula being checked, represented as a set of clauses.

The initial state is () | F, where F is to be checked for satisfiability.

Transitions between states are defined by a set of conditional transition
rules.
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The final state is either:

» a special fail state: fail, if F is unsatisfiable, or

> M| G, where G is a CNF formula equisatisfiable with the original formula
F, and M satisfies G

We write M |= C to mean that for every truth assignment v, v(M) = True
implies v(C) = True.
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Abstract DPLL: Backjumping and Learning

The basic rules can be improved by replacing the Backtrack rule with the more
powerful Backjump rule and adding a Learn rule:
Backjump :

M I N |= =C, and there is
some clause C’ \V I" such that :
F,.CEC' VI and M = ~C',
/" is undefined in M, and
1" or =1 oceurs in F orin M I N

MEN|F,C = MI|F,C if

Learn :
" { all atoms of C occur in F

M| F — M|F,C FLc



Abstract DPLL: Backjumping and Learning

The Backjump rule is best understood by introducing the notion of implication
graph, a directed graph associated with a state M | F of Abstract DPLL:

» The vertices are the variables in M

» There is an edge from v; to v» if v» was assigned a value as the result of
an application of UnitProp using a clause containing v-.

When we reach a state in which M |= —C for some C € F, we add an extra
conflict vertex and edges from each of the variables in C to the conflict vertex.



Abstract DPLL: Backjumping and Learning

The clause to use for backjumping (called the conflict clause) is obtained from
the resulting graph:

» We first cut the graph along edges in such a way that it separates the
conflict vertex from all of the decision vertices.

» Then, every vertex with an outgoing edge that was cut is marked.

» For each literal / in M whose variable is marked, —/ is added to the
conflict clause.

To avoid ever having the same conflict again, we can learn the conflict clause
using the learn rule.



