CS 357: Advanced Topics in Formal Methods
Fall 2019

Lecture 4

Aleksandar Zelji¢
(materials by Clark Barrett)

Stanford University

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a
high-level framework called Abstract DPLL.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a
high-level framework called Abstract DPLL.

» Abstract DPLL uses states and transitions to model the progress of the
algorithm.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a
high-level framework called Abstract DPLL.

» Abstract DPLL uses states and transitions to model the progress of the
algorithm.
» Most states are of the form M | F, where

» M is a sequence of annotated literals denoting a partial truth assignment,
and
» F is the CNF formula being checked, represented as a set of clauses.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a
high-level framework called Abstract DPLL.

» Abstract DPLL uses states and transitions to model the progress of the
algorithm.
» Most states are of the form M | F, where

» M is a sequence of annotated literals denoting a partial truth assignment,
and

» F is the CNF formula being checked, represented as a set of clauses.

» The initial state is () | F, where F is to be checked for satisfiability.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a
high-level framework called Abstract DPLL.

>

| 2

Abstract DPLL uses states and transitions to model the progress of the
algorithm.
Most states are of the form M | F, where

» M is a sequence of annotated literals denoting a partial truth assignment,
and
» F is the CNF formula being checked, represented as a set of clauses.

The initial state is () | F, where F is to be checked for satisfiability.

Transitions between states are defined by a set of conditional transition
rules.

Abstract DPLL

The final state is either:

» a special fail state: fail, if F is unsatisfiable, or

> M| G, where G is a CNF formula equisatisfiable with the original formula
F, and M satisfies G

We write M |= C to mean that for every truth assignment v, v(M) = True
implies v(C) = True.

Abstract DPLL Rules

UnitProp :

M[F,CVI = MI|F,CVI if{M‘:ﬁC

| is undefined in M

Abstract DPLL Rules

UnitProp :
M| F,CvVvI ==

Pureliteral :

MI|F,CVI

MI|F

g { MEC
| is undefined in M
| occurs in some clause of F
if —/ occurs in no clause of F
| is undefined in M

Abstract DPLL Rules

UnitProp :

M| F,CvVvI ==
Pureliteral :
Decide :

M| F ==

MI|F, CvI
MI|F
M| F

3

if

3

M= -C
| is undefined in M

| occurs in some clause of F
—/ occurs in no clause of F
| is undefined in M

1 or =l occurs in a clause of F
| is undefined in M

Abstract DPLL Rules

UnitProp :
M| F,CvVvI ==

Pureliteral :
Decide :

M| F ==
Backtrack :

MIEN|F,C =

MI|F,CVI
MI|F
MY F
M-l|F,C

M= -C
| is undefined in M

-

if —/ occurs in no clause of F

| is undefined in M

i 1 or =l occurs in a clause of F
| is undefined in M

; MI*NE-C

N contains no decision literals

==

{ | occurs in some clause of F

Abstract DPLL Rules

UnitProp :

M| F,CVvI -
PureLiteral :

M| F =
Decide :

M| F ==
Backtrack :

MIEN|F,C =
Fail :

M| F,C =

MI|F,CVI
MI|F
MY F
M-l|F,C
fail

M= -C
| is undefined in M

-

| occurs in some clause of F
—/ occurs in no clause of F
| is undefined in M

if

i\ 1is undefined in M
g M N E-C

N contains no decision literals
M= -C

if M contains no decision literals

{ 1 or =l occurs in a clause of F

Example

0] 1v %

NI
!
NI

2v3, 3Vv2, 1v4

Example

0] 1v2, 1v2, 2v3, 3v2, 1v4 = (PureLiteral)
4 | 1v2, 1v2, 2v3, 3v2, 1v4

Example

0] 1v2, 1v2, 2v3, 3v2, 1v4 = (PureLiteral)
4| 1v2, 1v2, 2Vv3, 3v2, 1v4 = (Decide)
419 1v2, 1v2, 2v3, 3Vv2, 1v4

Example

0|
4
419 |
4192 |

1v2,
1v2,
1v2,
1v2,

1v2, 2V3,
1v2, 2Vv3,
1v2, 2Vv3,
1v2, 2Vv3,

3v2,
3v2,
3v2,
3v2,

1v4
1v4
1v4
1v4

-
—
=

(PureLiteral)
(Decide)
(UnitProp)

Example

0] 1v2, 1v2, 2v3, 3v2, 1v4 = (PureLiteral)
4| 1v2, 1v2, 2Vv3, 3v2, 1v4 = (Decide)
419 | 1v2, 1v2, 2v3, 3v2, 1v4 = (UnitProp)
4192 | 1v2, Tv2, 2v3, 3v2, 1v4 = (UnitProp)
41923 | 1v2, 1v2, 2v3, 3v2, 1v4

Example

0

4|

419 |
4192 |
41923 |
41|

1v2,
1v2,
1v2,
1v2,
1v2,
1v2,

L B B B B Bl

< <

< <<

<

INENENESENES

2V3,
2V3,
2V3,
2V3,
2V3,
2V3,

3v2,
3v2,
3v2,
3v2,
3Vv2,
3v2,

1v4
1v4
1v4
1v4
1v4
1v4

Iy

(PureLiteral)
(Decide)
(UnitProp)
(UnitProp)
(Backtrack)

Example

0

4|

419 |
4192 |
41923 |
47 |
4123 |

1v2,
1v2,
1v2,
1v2,
1v2,
1v2,
1v2,

L B B B M W |

<< <

< <<

<

INES RS ENESIENEN]

2V3,
2V3,
2V3,
2V3,
2V3,
2V3,
2V3,

3v2,
3v2,
3v2,
3v2,
3Vv2,
3v2,
3v2,

1v4
1v4
1v4
1v4
1v4
1v4
1v4

FEieLy

(PureLiteral)
(Decide)
(UnitProp)
(UnitProp)
(Backtrack)
(UnitProp)

Example

0

4

419 |
4192 |
41923 |
41 |
4123 |
fail

1v2,
1v2,
1v2,
1v2,
1v2,
1v2,
1v2,

L B B B M W |

<< <

< <<

<

INES RS ENESIENEN]

2V3,
2V3,
2V3,
2V3,
2V3,
2V3,
2V3,

3v2,
3v2,
3v2,
3v2,
3Vv2,
3v2,
3v2,

1v4
1v4
1v4
1v4
1v4
1v4
1v4

RNy

(PureLiteral)
(Decide)
(UnitProp)
(UnitProp)
(Backtrack)
(UnitProp)
(Fail)

Example

0] 1v2,
4 | 1v2,
414 1v2,
4192 | 1v2,
41923 | 1v2,
41| 1v2,
4123 | 1v2,
fail

Result: Unsatisfiable

L B B B M W |

<< <

< <<

<

ISESENENENENEN

2V3,
2V3,
2V3,
2V3,
2V3,
2V3,
2V3,

3v2,
3v2,
3v2,
3v2,
3Vv2,
3v2,
3v2,

1v4
1v4
1v4
1v4
1v4
1v4
1v4

RNy

(PureLiteral)
(Decide)
(UnitProp)
(UnitProp)
(Backtrack)
(UnitProp)
(Fail)

Abstract DPLL: Backjumping and Learning

The basic rules can be improved by replacing the Backtrack rule with the more
powerful Backjump rule and adding a Learn rule:
Backjump :

M I N |= =C, and there is
some clause C’ \V I" such that :
F,.CEC' VI and M = ~C',
/" is undefined in M, and
1" or =1 oceurs in F orin M I N

MEN|F,C = MI|F,C if

Learn :
" { all atoms of C occur in F

M| F — M|F,C FLc

Abstract DPLL: Backjumping and Learning

The Backjump rule is best understood by introducing the notion of implication
graph, a directed graph associated with a state M | F of Abstract DPLL:

» The vertices are the variables in M

» There is an edge from v; to v» if v» was assigned a value as the result of
an application of UnitProp using a clause containing v-.

When we reach a state in which M |= —C for some C € F, we add an extra
conflict vertex and edges from each of the variables in C to the conflict vertex.

Abstract DPLL: Backjumping and Learning

The clause to use for backjumping (called the conflict clause) is obtained from
the resulting graph:

» We first cut the graph along edges in such a way that it separates the
conflict vertex from all of the decision vertices.

» Then, every vertex with an outgoing edge that was cut is marked.

» For each literal / in M whose variable is marked, —/ is added to the
conflict clause.

To avoid ever having the same conflict again, we can learn the conflict clause
using the learn rule.

