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The programming of a proof procedure is discussed in 
connection with trial runs and possible improvements. 

In [1] is set forth an algorithm for proving theorems of 
quantification theory which is an improvement in certain 
respects over previously available algorithms such as that  
of [2]. The present paper deals with the programming of 
the algorithm of [1] for the New York University, In- 
stitute of Mathematical  Sciences' IBM 704 computer, 
with some modifications in the algorithm suggested by 
this work, with the results obtained using the completed 
algorithm. Familiarity with [1] is assumed throughout. 

Changes in the Algorithm and Programming 
Techniques Used 

The algorithm of [1] consists of two interlocking parts. 
The first part, called the QFl-Generator, generates (from 
the formula whose proof is being at tempted) a growing 
propositional calculus formula in conjunctive normal form, 
the "quantifier-free lines." The second part, the Processor, 
tests, at regular stages in its "growth," the consistency of 
this propositional calculus formula. An inconsistent set 
of quantifier-free lines constitutes a proof of the original 
formula. 

The algorithm of [1] used in testing for consistency 
proceeded by successive elimination of atomic formulas, 
first eliminating one-literal clauses (one-literM clause rule), 
and then atomic formulas all of whose occurrences were 
positive or all of whose occurrences were negative (affirma- 
tive-negative rule). Finally, the remaining atomic formulas 
were to have been eliminated by the rule: 

III .  Rule for Eliminating Atomic Formulas. Let the 
given formula F be put  into the form 

(A V p) & (B V ?~) & R 

where A, B, and R are free of p. (This can be done 
simply by grouping together the clauses containing p and 
"factoring out"  occurrences of p to obtain A, grouping 
the clauses containing # and "factoring out"  # to obtain 
B, and grouping the remaining clauses to obtain R.) Then 
F is inconsistent if and only if (A V B) & R is inconsistent. 

After programming the algorithm using this form of 
Rule I I I ,  it was decided to replace it by the following rule: 

t The research reported in this document has been sponsored 
by the Mathematical Sciences Directorate, Air Force Office of 
Scientific Research, under Contract No. AF 49(638)-777. 

III*. Splitting Rule. Let the given formula F be put  in 
the form 

(A V p )  & ( B V / 5 )  & R  

where A, B, and R are free of p. Then F is inconsistent if 
and only if A & R and B & R are both inconsistent. 

JUSTIFICATION OF RULE III*. For 1 p = 0, F = A & R ; 
f o r p  = 1, F = B &R.  

The forms of Rule I I I  are interchangeable; Mthough 
theoretically they are equivalent, in actual applications 
each has certain desirable features. We used Rule I I I*  be- 
cause of the fact that  Rule I I I  can easily increase the 
mlmber and the lengths of the clauses in the expression 
rather quickly after several applications. This is prohibi- 
tive in a computer if ones fast access storage is limited. 
Also, it was observed that  after performing Rule III ,  
many duplicated and thus redundant  clauses were present,. 
Some success was obtained by causing the machine to sys- 
tematically eliminate the redundancy; but  the problem of 
total  length increasing rapidly still remained when more 
complicated problems were at tempted.  Also use of Rule 
I I I  can seldom yield new one-literM clauses, whereas use 
of Rule I I I*  often will. 

In programming Rule III*, we used auxiliary tape 
storage. The rest of the testing for consistency is carried 
out using only fast access storage. When the "Splitting 
Rule" is used one of the two formulas resulting is placed 
on tape. Tape memory records are organized in tbe cafe- 
terial stack-of-plates scheme: the last record written is 
the first to be read. 

In the program written for the IBN[ 704, the matrix and 
conjunction of quantifier-free lines are coded into cross- 
referenced associated (or linked) memory tables by the 
QFL-Generator  and then analyzed by the Processor. In 
particular, the QFL-Generator  is programmed to read in 
the matrix M in suitably coded Polish (i.e., "parenthesis- 
free") form. The conversion to a quantifier-free matrix in 
conjunctive normal form requires, of course, a certain 
amount  of pencil work on the formula, which could have 
been done by the computer. In doing this, we departed 
from [1], by not using prenex normal form. The steps are: 

(1) Write all truth-functional connectives in terms of 
~ ,  6,  V.  

(2) Move all ~-~'s inward successively (using de Morgan 
laws) until they either are cancelled (with another ,-,~) or 
acting on an atomic formula. 

(3) Now, replace existential quantifiers by function 
symbols (cf. [1], p. 205), drop universal quantifiers, and 
place in conjunctive normal form. A simple one-to-one 
assembler was written to perform the final translation of 
the matrix M into octal numbers. 

I t  will be recalled that  the generation of quantifier-free 
lines is accomplished by successive substitutions of "con- 
stants" for the variables in the matrLx M. In the program 

As in [1], I stands for "truth", and 0 for "falsehood". 
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the constants are represented by the successive positive 
integers. 

For a matrix containing n individual variables, the n- 
tuples of positive integers are generated in a sequence of 
increasing norm such tha t  all n-tuples with a given norm 
are in decreasing n-ary numerical order. Here we define 
the norm of (j~, - - .  , j , , )=  j~d- " ' "  + j,~= ]]J~l]- Other 
norms could have been used. For example, Gilmore [2] 
takes for ]l Jill the max imum of j i ,  " "  , jn • In  [1] a more 
complicated norm is indicated. 

Substitutions of successive n-tuples into the matrix 
cause new constants to appear  in the matrix. The program 
numbers constants in their order of appearance. Thus, the 
constants are ordered by the program in a manner  de- 
pending upon the input data. By rearranging the clauses 
of a formula a different order would in general be created. 
In  some cases, whether or not the program could actually 
prove the validity of a given formula (without running 
out of fast  access storage) depended on how one shuffled 
the punched-data deck before reading it into the assem- 
bler! Thus, the variat ion in ordering of constants did 
affect by a factor of 10 (from 500 to 5000) the number  of 
lines needed to prove the validity of: 

(e) (Ed) (x) (y)[S(x,  y, d) -÷ T(x,  y, e)] 

--~ (e) (x) (Ed) (y)[S(x ,  y, d) ~ T(x,  y, e)] 

(This valid formula may  be thought  of as asserting tha t  
uniform continuity implies continuity if we set: 

s ( z ,  y, d) ~ Ix - y[ < d 

T(x,  y, e) ~ If(x) -- f(Y) l < e.) 

In  storing the quantifier-free lines, two tables are used. 
The first, called the conjunction table, is a literal image of 
the quantifier-free lines in which one machine word cor- 
responds to one literal, i.e., to p or ~-~p where p is an atomic 
formula. The lines in the second, or formula table are them- 
selves heads of two chain lists giving the occurrences of p 
and ~,p respectively in the conjunction table. In  addition, 
included for formula p in the formula table are counts of 
the number  of clauses in which p and ~ p  occur and total  
number  of all literals in these clauses; the formula table is 
itself a two-way linked list. A third short list of those 
literals is kept in which are entered all formulas to which 
the one-lateral clause and affirmative-negative rules apply;  
this is called the ready list. If  the program tries to enter p 
and ,~p  into the ready list, an inconsistency has been 
found; the machine stops. 

The total i ty  of the processing rules requires only two 
basic operations: a subroutine to delete the occurrences of 
a literal p or ~ p  from the quantifier-free lines, and a 
routine to eliminate from them all the clauses in which p 
or ~ p  occur. 

We may  observe that  only the deletion program can 
create new one-literal clauses, and likewise applications of 
the affirmative-negative rule can come only from the 
elimination program. 

The machine thus performs the one literal-clause and 
affirmative-negative rules as directed by the ready list 
until the ready list is empty.  I t  is possible tha t  the choice 
of p to be eliminated first is quite critical in determining 
the length of computat ion required to reach a conclusion: 
a program to choose p is used, but  no tests were made to 
vary  this segment of the program beyond a random selec- 
tion, namely the first entry  in the formula table. To per- 
form Rule I I I* ,  one saves the appropriate tables with some 
added reference information in a tape record, then per- 
forms an elimination on ~ p  and a deletion on p. At a con- 
sequent discovery of consistency, one must  generate more 
quantifier free lines; the QFL-generator is recalled. Other- 
wise, at finding an inconsistency, the machine must  check 
to see if there are any records on the Rule I I I *  tape: if 
none, the quantifier-free lines were inconsistent; otherwise, 
it reads in the last record. 

If  one uses Rule I I I  (which we did in an early version 
of our program),  an entirely different code is needed. The 
problem is precisely tha t  of mechanizing the application of 
the distributive law. 

Results Obtained in Running the Program 

At the time the programming of the algorithm was 
undertaken, we hoped that  some mathematical ly  meaning- 
ful and, perhaps nontrivial, theorems could be proved. 
The actual achievements in this direction were somewhat 
disappointing. However, the program performed as well 
as expected on the simple predicate calculus formulas 
offered as fare for a previous proof procedure program. 
(See Gilmore [1].) In  particular, the well-formed formula 

(Ex) (Ey) (z){F(x,  y) ~ (F(y,  z) & F(z, z) )) 

& ( ( F ( x , y )  & G ( x , y ) )  ~ (G(x , z )  & G ( z , z ) ) ) }  

which was beyond the scope of Gilmore's program was 
proved in under two minutes with the present program. 
Gilmore's program was halted at  the end of 7 "substi tu- 
tions", (quantifier-free lines) after an elapsed period of 
about  21 minutes. I t  was necessary for the present pro- 
gram to generate approximately 60 quantifier-free lines 
before the inconsistency 2 appeared. Indeed,  the "uniform 
continuity implies continuity" example mentioned above 
required over 500 quantifier-free lines to be generated and 
was shown to be valid in just over two minutes. This was 
accomplished by  nearly filling the machine to capacity 
with generated quantifier-free lines (2000 lines in this 
case) before applying any of the rules of reduction. 

Rather  than describe further successes of the program, 
it will be instructive to consider in detail a theorem tha t  
the program was incapable of proving and to examine the 
cause for this. This particular example is one the authors 
originally had hoped the program could prove, an ele- 
mentary  group theory problem. In  essence, it is to show 
that  in a group a left inverse is also a right inverse. 

2 In [1], a hand calculation of this example using the present  
scheme showed inconsistency at 25 quantifier-free lines. The 
discrepancy is due to a different rule for generation of constants .  
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I t  is, in fact, quite easy to follow the behavior of the 
proof procedure on this particular example as it parallels 
the usual approach to the problem. The problem may be 
formulated as follows: 

Axioms: 1. e . x = x  

2. I ( z ) . x = e  

3. ( z . y ) . z  = w ~ x . ( y . z )  = w 

4. x . ( y ' z )  = w ~  ( x . y )  .z = w 

Conclusion: x . I ( x )  = e 

The letter e is interpreted as the identity element and 
the function I as the inverse function. The associative law 
has been split into two clauses for convenience. 

A proof is as follows: 

1. I ( I (x ) ) . I (x )  = e by Axiom 2 

2. e.x = x by Axiom 1 

3. I ( x ) . x  = e by Axiom 2 

4. I ( l (x) ) .e  = x by Axiom 3, taking (I(I(x)),  I(x),  x) for 

(x, y, z) 

5. e.I(x) = I(x) by Axiom 1 

6. I ( l ( x ) ) . I ( x )  = e by Axiom 2 

7. I ( I (x ) ) .e  = x step 4 

8. x . I (x)  = e by Axiom 4, taking ([(I(x)), e, I(x)) for 

(x, y, z) 

Step 8 is the desired result. 

To formalize this proof would require adjoining axioms 
of equality. To avoid this, one can introduce the predicate 
of three arguments P ( x ,  y, z),  interpreted as x . y  = z. The 
theorem reformulated becomes: 

Axioms: 1. P ( e , x , x )  

2. P ( I ( x ) , x , e )  

3. ~ , P ( x ,  y, u) V ,-~P(u, z, w) V 

,~,P(y,  z, v) V P ( x ,  v, w) 

4. ~ P ( y ,  z, v) V N P ( x ,  V, W) V 

~ P ( x ,  y, u) V P ( u ,  z, w) 

Conclusion: P ( x ,  I ( x ) ,  e). 

The theorem to be proved valid is the implication of the 
conjunction of the four axioms with the conclusion, the 
universal quantifie, rs appearing outside the matrix. 

To complete the: preparation of the well-formed formula 
for encoding for the assembler, it is necessary to negate 
the conclusion. (el!. [1], p. 204.) 

The single existential quantifier has no dependence on the 
universal quantifiers, hence leads to the constant function 
s when this existential quantifier is replaced by a function 
symbol. (cf. [1], p. 205.] 

The conclusion then becomes 

, 'uP(s,  .I@), e). 

The conjunction of this with the four axioms gives the 
desired form. 

As seen from the proof previously noted the quantifier- 
free clauses needed to produce the inconsistency are 

1. P(I(I(s)) ,  I(s),  e) 

2. P(e, s, s) 

3. P(I(s) ,  s, e) 

4. ~ P ( [ ( I ( s ) ) ,  I(s), e) V ~ P ( e ,  s, s) V ~ P ( [ ( s ) ,  s, e) V 

POt([(s)), e, s) 

5. P(e, [(s), I(s)) 

6. ~P(e ,  I(s), I(s)) V ~ P ( I ( I ( s ) ) ,  I(s), e) V ~ P ( I ( I ( s ) ,  e, s) V 

P(s, I(s),  e) 

7. ~ P ( s ,  I(s), e) 

( I t  is quite clear in this case that  successive applications 
of the one-literal clause rule reducing this set to 

P(s ,  I ( s ) ,  e) & ,-~P(s, ( I ( s ) ,  e) .)  
The question to be considered is: how many quantifier- 

free lines must be generated by the present program to 
realize these required lines? The constants are generated in 
the following : 

1. e 
2. s 
3. I(s) 
4. I(e) 
5. / ([(4)  

etc. 

(The constants are identified directly with their index 
e.g. the 6-tuple (1, 1, 1, 1, 1, 1) represents (e, e, e, e, e, e). 
As this is the first, substitution, the program assigns in 
order, reading the well-formed formula backwards and 
from the inside out for nesting functions: e, s, I ( s ) ,  I ( e ) ,  
I ( I ( s ) ) .  The I ( I ( s ) )  appears when x is assigned I ( s ) ,  no 
new entries occurring until this time. Note that  there are 
6 free variables (u, v, w, x, y, z) in the matrix).  

The program generates the needed n-tuples by produc- 
ing all possible n-tuples of integers whose sum N of entries 
is fixed, N = n, n --k 1, . . . .  Thus it is only necessary to 
consider the n-tuple which has the maximum sum of 
entries. In this case, the substitution u = s, v= I ( s ) ,  
w = e, x = I ( I ( s ) ) ,  y = e, z = I ( s )  (required for 
axiom 4 to produce the clause 6 in the "proof"  above in a 
quantifier-free line) gives the n-tuple with maximum sum. 
The n-tuple is seen to be (2, 3, 1, 5, l, 3), the sum equals 

The combinatorial expression ( ~ ) g i v e s  the total 15. 
~ . v  / 

number of n-tuples of positive integers whose sum is less 
than or equal a to N. 

a To see this, consider a sequence of N-F1 ones. Flag n of these. 
The flag is to be in terpreted "sum all l ' s ,  including the flagged 1, 
to the next flag and consider this sum as an ent ry  in the n - tup le" .  
Placing an unflagged 1 on the extreme left, leaving it fixed, con- 
sider the possible permutat ions  of all other symbols. The dif- 

f e r e n t s e q u e n c e s t o t a l ( ~  r )  and, r e g a r d i n g t h e s e t o f l ' s s t a r t i n g  

with the last flagged 1 as overflow, this is seen to represent  pre- 
cisely the desired n-tuples.  
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I t  is seen that  to prove this theorem at least (1;4) = 3O03 

lines must  be generated and that  the inconsistency will be 

found on or before ( 1 ~ ) =  5005 lines have been generated. 4 

The present program generated approximately 1300 
quantifier-free lines. This nmnber  of quantifier-free lines 
was accomplished holding all major tables simultaneously 
in core memory,  limited to 32,768 "words".  (This was 
done to insure a reasonable t ime factor for any problem, 
within possible scope of the program. For this reason also, 
the entire program was coded in SAP with many  time- 
saving devices employed.) 

The authors believe tha t  a reprogramming to make use of 
tape storage of tables might realize a factor of 4 for the 
total  number  of quantifier-free lines at tainable before 
running time became prohibitive. This would be just 
sufficient for this problem. Tha t  realizing this extra capa- 
city is really uninteresting is seen by noting tha t  if the 
conclusion was placed befo~  the axioms, altering the 
validity of the matrix not, at  all, the element I(e)  would 
be generated before I (s)  and the needed n-tuple would 

16. T h e n ( l : ) =  8008 becomes the upper bound, 
/ \ 

sum to 

beyond the capacity of the projected program. Other 
formulations of the same problem result in quite unap- 
proachable figures for the number  of quantifier-free lines 
needed. (For another example illustrating the same situa- 
tion, see Prawitz [3].) 

The existing program allows one to think of working 
with a capacity of 1000 or 2000 quantifier-free lines instead 
of a capacity of 10 or 20, the previous limit. The time re- 
quired to generate additional quantifier-free lines is 
independent of the number  of quantifier-free lines already 
existing. Against this linear growth of number  of quantifier- 
free lines generated, there is, in a meaningful sense, an 
extreme nonlinear growth in the number  of quantifier-free 
lines to be considered with increasingly more "difficult" 
problems. This is true of simple enumeration schemes of 
the nature considered here. I t  seems tha t  the most fruitful 
future results will come from reducing the number  of 
quantifier-free lines that  need be considered, by excluding, 
in some sense, " irrelevant" quantifier-free lines. Some 
investigation in this area has already been done (see 
Prawitz [3]). 

4 If the rule for generating n-tuples had been, for each m, to 
generate all n-tuples possible such that each entry assumes a 
positive integral value less than or equal to m, it is clear that at where 
least 46 (= 4096) quantifier-free lines would be needed and 56 
(= 15625) lines would suffice to guarantee a solution. If no more (2) 
information were nvailable, one sees an intuitive advantage, in 

and 
this case, for using the previous method. In general, the authors 
see no preference for either method, in contrast to some previous (3) 
suggestions that the latter method seemed intuitively better. 
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Nonlinear Regression and the 
Solution of Simultaneous 

Equations 

R o b e r t  M .  B a e r  

University of California, Berkeley 

If one has a set of observables (z l ,  " " ,  Zm) which are 
bound in a relation with certain parameters (a l ,  "'" , am) by 
an equation ~'(zl, - "  ; a~, " - )  = 0, one frequently has the 
problem of determining a set of values of the al  which mini- 
mizes the sum of squares of differences between observed 
and calculated values of a distinguished observable, say 
zm. If the solution of the above equation for zm, 

Zm = ~ ( Z l ,  " ' "  ; O 1 ,  " ' ' )  

gives rise to a function ~ which is nonlinear in the a i ,  then 
one may rely on a version of Gaussian regression [1, 2] for 
an iteration scheme that converges to a minimizing set of 
values. It is shown here that this same minimization technique 
may be used for the solution of simultaneous (not necessarily 

linear) equations. 

Modifications of the technique, while necessary for 
convergence in some problems, are extraneous to the argu- 
ment  and shall be ignored. The Gaussian procedure m a y  
then be defined as follows. 

I f  ai(h) denotes the values of the parameters  at  the hth 
iteration, then ai(h + 1) = ai(h) + el(h), where the 
corrections e,(h) are the solution to the set of equations 

(1) ~ A~iej -k B~ = 0 (i = 1, . . .  , n) 
J 

N-' Aij 
Oal Oat 

Bi = Z [~ -- zm(ld] 0,~ 
k Oai 
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