Model Checking

An Overview, Continued...

Goals

- Vocabulary
- High-level understanding of state-of-the-art algorithms
- Could read the paper and understand it

Reference: https://www.eeweb.com/profile/adarbari/articles/a-brief-history-of-formal-verification

Outline

- Review
- Approximations and Inductive Invariants
- Interpolation-based model checking
- IC3/PDR

Review: What Is Model Checking

- An approach for verifying the temporal behavior of a system
- Primarily fully-automated ("push-button") techniques
- Model

- Considers infinite sequences
- PSPACE-complete for FSMs

Review: Symbolic Transition Systems in Practice

- States are made up of state variables $v \in V$
- A state is an assignment to all variables
- A Transition System is $\langle V, I, T\rangle$
- V : a set of state variables, V^{\prime} denotes next state variables
- I: a set of initial states
- T: a transition relation
- $T\left(v_{0}, \ldots, v_{n}, v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right)$ holds when there is a transition
- Note: will often still use s to denote symbolic states (just know they're made up of variables)
- Symbolic state machine is built by translating another representation
- E.g. a program, a mathematical model, a hardware description, etc...

Review: Symbolic Transition Systems in Practice

- States are made up of state variables $v \in V$
- A state is an assignment to all variables
- A Transition System is $\langle V, I, T\rangle$
- V : a set of state variables, V^{\prime} denotes next state variables
- I : a set of initial states
- T : a transition relation

Note:
Will often use

$$
s:=\left\langle v_{0}, \ldots v_{n}\right\rangle
$$

to represent a state.
Will use a subscript for time when it matters

Might drop arguments in T

- $T\left(v_{0}, \ldots, v_{n}, v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right)$ holds when there is a transition
- Note: will often still use s to denote symbolic states (just know they're made up of variables)
- Symbolic state machine is built by translating another representation
- E.g. a program, a mathematical model, a hardware description, etc...

Review: Symbolic Transition System Example

- 2 variables: $V=\left\{v_{0}, v_{1}\right\}$
- $S_{0}:=\neg v_{0} \wedge \neg v_{1}, \quad S_{1}:=\neg v_{0} \wedge v_{1}$
- $S_{2}:=v_{0} \wedge \neg v_{1}, \quad S_{3}:=v_{0} \wedge v_{1}$
- Transition relation

$$
\begin{aligned}
& \left(\neg v_{0} \wedge \neg v_{1}\right) \Rightarrow\left(\left(\neg v_{0}^{\prime} \wedge v_{1}^{\prime}\right) \vee\left(v_{0}^{\prime} \wedge \neg v_{1}^{\prime}\right)\right) \wedge \\
& \left(\neg v_{0} \wedge v_{1}\right) \Rightarrow\left(v_{0}^{\prime} \wedge v_{1}^{\prime}\right) \wedge \\
& \left(v_{0} \wedge \neg v_{1}\right) \Rightarrow\left(v_{0}^{\prime} \wedge v_{1}^{\prime}\right) \wedge \\
& \left(v_{0} \wedge v_{1}\right) \Rightarrow\left(v_{0}^{\prime} \wedge v_{1}^{\prime}\right)
\end{aligned}
$$

Reminder: State Machine vs Execution

State Machine uses capitals
Symbolic execution uses lowercase

Concrete Execution:

$$
s 0=S 0, s 1=S 2, s 2=S 3, s 3=S 3
$$

BDD-based model checking

- Start with $R=$ Init
- Keep computing image and growing reachable states
- Stop when there's a fixpoint (reachable states not growing)
- Can handle $\sim 10^{20}$ states
- More with abstraction techniques and compositional model checking

Review: BMC Graphically

s_{0} must be an initial state
Check if it can violate the property at time k

Review: K-Induction Graphically

Base Case

s_{0} must be an initial state

Inductive Case

Arbitrary starting state s_{0} such that $P\left(s_{0}\right)$ holds

Review: Inductive Invariants

- The goal of most modern model checking algorithms
- Over finite-domain, just need to show that algorithm makes progress, and it will eventually find an inductive invariant
- E.g. in the worst case, the reachable states are themselves an inductive invariant
- Hopefully there's an easier to find inductive invariant that is sufficient
- Inductive Invariant: II
- $\operatorname{Init}(s) \Rightarrow I I(s)$
- $\mathrm{T}\left(s, s^{\prime}\right) \wedge I I(s) \Rightarrow I I\left(s^{\prime}\right)$
- $I I(s) \Rightarrow P(s)$

State Space
Property
Simple Inductive
Invariant

Searching for Inductive Invariants

- Interpolant-based model checking
- IC3/PDR
- For the remainder of this talk, we're assuming safety properties
- Can always perform liveness to safety transformation

Building Blocks: Approximations

- Problems
- Explicit reachability computation (e.g. BDDs) is difficult
- Inductive invariants are difficult to find
- Solution (motivation for approximations)
- Build approximations of reachable states
- Iteratively refine it until inductive

What is an approximation?

- Actual reachable state set: R
- Over-approximation, $O: R \rightarrow 0$
- Proofs on over-approximation holds
- Counterexamples can be spurious
- Under-approximation, $U: U \rightarrow R$
- Proofs on under-approximation can be spurious
- Counterexamples are real

Over-approximation
Exact States

Under-approximation

Craig Interpolation

- Given an unsatisfiable formula, $A \wedge B$
- Craig Interpolant, I
- $A \rightarrow I$
- $I \wedge B$ is UNSAT
- $V(I) \subseteq V(A) \cap V(B)$
- Where V returns the free variables (uninterpreted constants) of a formula
- We can use interpolants as over-approximations of A

Obtaining Craig Interpolants

- Mechanical over SAT
- Label clauses in the proof
- Some straightforward post-processing
- Non-trivial for SMT
- But there are solvers that support it
- MathSAT
- Smt-Interpol
- CVC4 - through SyGuS

Obtaining Craig Interpolants

- Not all theories admit (quantifier-free) interpolants
- Arrays do not guarantee quantifier-free interpolants
- Example:
$A:=a=\operatorname{store}(b, i, e)$
$B:=\operatorname{select}(a, j) \neq \operatorname{select}(b, j) \wedge \operatorname{select}(a, k) \neq \operatorname{select}(b, k) \wedge j \neq k$
$V(A) \cap V(B):=\{a, b\}$
- There is an extension to the array theory for supporting quantifier free interpolants: "Quantifier-Free Interpolation of a Theory of Arrays"

Interpolant-based Model Checking

- Big picture
- Perform BMC
- Iteratively compute and refine an over-approximation of states reachable in k steps
- If it becomes inductive, you're done

Interpolants for Abstraction from BMC Run

- Obtain interpolant, I, from an unsat $B M C$ run with A and B as shown below
- Useful properties
- I over-approximates A, i.e. states reachable in one-step from Init: $A \rightarrow I$
- There are no states reachable in $k-1$ steps from I that violate the property: $I \wedge B$ UNSAT
- I only contains symbols from one time step (time 1): $V(I) \subseteq V(A) \cap V(B)$

Interpolation-based Model Checking

```
if check(Init }\wedgeT(\mp@subsup{s}{0}{},\mp@subsup{s}{1}{})\wedge(\negP(\mp@subsup{s}{0}{})\vee\negP(\mp@subsup{s}{1}{})
    return False
R= Init, k=2
while True
```



```
    if check( }A\wedgeB
        if R == Init
        return False
        else
            k++
    else
        I = get_interpolant()
        R=R\veeI[1/0] // map symbols at 1 to symbols at 0
        if \negcheck(R\wedgeT( }\mp@subsup{s}{0}{},\mp@subsup{s}{1}{})\wedge\negR(\mp@subsup{s}{1}{})
            return True
```


Interpolant-based Model Checking Example

- Start - can’t violate in 2 steps

Interpolant-based Model Checking Example

- $k=2$

Interpolant-based Model Checking Example

- $k=2$

Interpolant-based Model Checking Example

- $\mathrm{k}=2$, can reach S 9 in 2 steps from R

Interpolant-based Model Checking Example

- $k=3$

Interpolant-based Model Checking Example

- $k=3$

Interpolant-based Model Checking Example

- $\mathrm{k}=3$, interpolant guarantees property not violated in $\mathrm{k}-1 \rightarrow 2$ steps

Interpolant-based Model Checking Example

- Terminate with True!

Interpolant-based model checking

- Advantages
- Approximate reachability
- Clever refinements
- Disadvantages
- Requires unrolling (can become expensive)
- Needs to restart every time k is incremented
- Refinements are clever, but not directly targeting induction

IC3 / PDR

- State-of-the-art model checking approach for proofs
- It can also find bugs faster than BMC in some cases
- For the purposes of the talk, focus on SAT
- Has been extended to SMT, but it's more complicated
- Covering the simplest version of SAT-based IC3
- Hybrid of original IC3 paper and PDR paper

IC3: Vocabulary

- Inductive Candidate: C
- $\operatorname{Init}(s) \Rightarrow C(s)$
- $\mathrm{T}\left(s, s^{\prime}\right) \wedge C(s) \Rightarrow C\left(s^{\prime}\right)$
- Manipulating variables
- $v_{0} \vee \neg v_{2} \vee v_{8}$
- $\neg v_{0} \wedge v_{2} \wedge \neg v_{8}$
- State
- $s=v_{0} \wedge \neg v_{1} \wedge \cdots \wedge v_{n}$

Initiation
Consecution

Clause
Cube (inverse of clause)

Cube over all variables (aka a "minterm")

$$
\begin{aligned}
& x=1 ; y=1 ; \\
& \text { while } *: \\
& \qquad \begin{array}{l}
y=y+x ; \\
x=x+1 ;
\end{array}
\end{aligned}
$$

$$
\text { Property: } y \geq 1
$$

- Counterexample to Induction (CTI)
- Model assignment from failed consecution
- Attempt consecution on this program using property as inductive candidate
- E.g. k -induction for $\mathrm{k}=1$
- $y \geq 1 \wedge x^{\prime}=x+1 \wedge y^{\prime}=y+x \wedge \neg\left(y^{\prime} \geq 1\right)$ is SAT (consecution fails)
」

P transition relation P^{\prime}

- CTI: $\{x=-1, y=1\}$

$$
\begin{aligned}
& x=1 ; y=1 ; \\
& \text { while } \quad \begin{array}{l}
\text { : } \\
y=y+x ; \\
x=x+1 ;
\end{array}
\end{aligned}
$$

IC3: Relative Induction
Property: $y \geq 1$

- Property $y \geq 1$ is not inductive
- System does have an easy invariant: $\phi:=x \geq 0$
- $x \geq 0$ true in the initial state
- $\mathrm{x} \geq 0 \wedge x^{\prime}=x+1 \wedge y^{\prime}=y+x \wedge \neg\left(x^{\prime} \geq 0\right)$ is UNSAT (inductive proof)
- Property $y \geq 1$ is inductive relative to this invariant, ϕ

High-level Idea

- Build a sequence of over-approximations (e.g. formulas)
- Sequence of frames, F
- where $\mathrm{F}[\mathrm{k}]$ is an over-approximation of the states reachable in k steps
- Frames are in CNF
- Refine these frames using CTIs
- When there is an F[i] that is (one-step) inductive, you are done
- If the property is false, you'll discover that when trying to refine a frame

Another View

- What are frames?
- F[k] over-approximates the states reachable in k steps
- Alternatively,
- F[k] contains a "guess" at invariants
- They don't hold inductively yet
- But, they hold for up to k steps
- i.e. they seem like reasonable guesses for an invariant

IC3: Details

- IC3 maintains the following invariants on its frames:
- $\mathrm{F}[0]=$ Init
- $\mathrm{F}[\mathrm{i}] \wedge T \rightarrow \mathrm{~F}[\mathrm{i}+1]$ for $0 \leq \mathrm{i}<\mathrm{k}$
- $\mathrm{F}[\mathrm{i}] \rightarrow \mathrm{P} \quad$ for $0 \leq \mathrm{i}<\mathrm{k}$
- Note that $\mathrm{F}[\mathrm{k}]$ does not necessarily imply P
- We iteratively refine it until it does imply P,

IC3: Proof Obligations

- Proof obligation (s, i)
- Cube s at frame i
- Handling proof obligations: Check $F[i-1] \wedge \neg s \wedge T \wedge s^{\prime}$
- If UNSAT
- $\neg s$ is inductive relative to $\mathrm{F}[i-1]$ (aka not reachable in one-step from F[i-1]
- If SAT, get a CTI
- $\exists c . F[i-1] \wedge \neg s \wedge c \wedge T \rightarrow s^{\prime}$
- There's a state contained in F[i-1] that reaches s' in one step
- Add proof obligation ($c, i-1$) and recurse

IC3: Proof Obligation Outcomes

- Case 1: Counterexample
$F[0]=$ Init
F[1]
F[2]

F[k]
$\left(s_{k}, \mathrm{k}\right) \quad$ obtained from $F[k] \wedge \neg P^{\prime}$

IC3: Proof Obligation Outcomes

- Case 1: Counterexample - obtain trace from recursive proof obligations
$\mathrm{F}[0]=$ Init
F[1]
F[2]
!

F[k]
s_{0} reachable from Init
$\left(s_{1}, 1\right)$ obtained from $F[1] \wedge \neg s_{2} \wedge T \wedge s_{2}{ }^{\prime}$
$\left(s_{2}, 2\right)$ obtained from $F[2] \wedge \neg s_{3} \wedge T \wedge s_{3}{ }^{\prime}$
:
$\left(s_{k}\right.$, k) obtained from $F[k] \wedge \neg P^{\prime}$

IC3: Proof Obligation Outcomes

- Case 2: s is not reachable
$F[0]=\operatorname{lnit}$

$F[1]$	$\left(s_{1}, 1\right)$
$F[2]$	$\left(s_{2}, 2\right)$
\vdots	\vdots

F[k]
$\left(s_{k}, \mathrm{k}\right)$ obtained from $F[k] \wedge \neg P^{\prime}$

IC3: Proof Obligation Outcomes

- Case 2: s is not reachable
$\mathrm{F}[0]=$ Init
F[1]
F[2]

F[k]
s_{0} not reachable from Init
$\left(s_{1}, 1\right)$
$\left(s_{2}, 2\right)$
$\left(s_{k}, \mathrm{k}\right)$ obtained from $F[k] \wedge \neg P^{\prime}$

IC3: Proof Obligation Outcomes

- Case 2: s is not reachable

$\mathrm{F}[0]=$ Init	s_{0} not reachable from Init
$\mathrm{F}[1]$	$\left(s_{1}, 1\right)$
$\mathrm{F}[2]$	$\left(s_{2}, 2\right)$
\vdots	\vdots
$\mathrm{F}[\mathrm{K}]$	$\left(s_{k}, \mathrm{k}\right)$ obtained from $F[k] \wedge \neg P^{\prime}$

IC3: Proof Obligation Outcomes

- Case 2: s is not reachable - refined frames

$\mathrm{F}[0]=$ Init	s_{0} not reachable from Init	block in $\mathrm{F}[1]$
$\mathrm{F}[1]$	$\left(s_{1}, 1\right)$	block in $\mathrm{F}[2]$
$\mathrm{F}[2]$	$\left(s_{2}, 2\right)$	block in $\mathrm{F}[3]$
\vdots	\vdots	
$\mathrm{F}[\mathrm{k}]$	$\left(s_{k}, \mathrm{k}\right)$ obtained from $F[k] \wedge \neg P^{\prime}$	blocked by recursion

IC3 Main Loop

while SAT ? [F[k] $\wedge \neg P]$
extract a bad state, s
recursively block proof obligation (s, k)

Termination conditions:

1. For some i, F[i] is inductive: Property is TRUE
2. Pushed proof obligation to Init: Property is FALSE

Congratulations!

- You made it through the IC3 explanation!!

Congratulations!

- You made it through the IC3 explanation!!
- But you might be wondering, is that it?
- We CAN'T just be blocking one state at a time, right?

Generalization

- For counterexample to induction, s
- Before creating a proof obligation: (s, i)
- Generalize s to cover more states
- Recall, the more literals in a cube s, the less states it covers
- Several generalization techniques
- Simplest one: ternary simulation
- Get model, replace one literal with X and simulate
- If no X makes it to next state, then that literal is unnecessary (drop it)

IC3 Example

$\mathrm{P}=\neg S 9$

Init does not intersect with bad state
$F[0]=$ Init

IC3 Example

Push Frame

$$
\begin{aligned}
& \mathrm{F}[0]=\text { Init } \\
& \mathrm{F}[1]=\text { True }
\end{aligned}
$$

IC3 Example

$F[1] \wedge \neg P$ is SAT, proof obligation $(\mathrm{S} 9,1)$
$F[0]=$ Init
F[1] = True

IC3 Example

$F[0] \wedge \neg S 9 \wedge S 9^{\prime}$ is UNSAT, block S9
$F[0]=$ Init
$\mathrm{F}[1]=\neg S 9$

IC3 Example

Push Frame

$\mathrm{F}[0]=$ Init
$\mathrm{F}[1]=\neg S 9$
F[2] = True

IC3 Example

```
\(F[2] \wedge \neg P\) is SAT, proof obligation \((S 9,2)\)
```

$F[0]=$ Init
$\mathrm{F}[1]=\neg S 9$
$\mathrm{F}[2]=$ True

IC3 Example

$F[1] \wedge \neg S 9 \wedge S 9^{\prime}$ is SAT, proof obligation + generalization $(S 7 \vee S 8,1)$
$\mathrm{F}[0]=$ Init
$\mathrm{F}[1]=\neg S 9$
F[2] = True

IC3 Example

$F[0] \wedge \neg(S 7 \vee S 8) \wedge\left(S 7^{\prime} \vee S 8^{\prime}\right)$ is UNSAT, block $S 7 \vee S 8$

$\mathrm{F}[0]=$ Init
$\mathrm{F}[1]=\neg S 9 \wedge \neg S 7 \wedge \neg S 8$
$\mathrm{F}[2]=\neg S 9$

IC3 Example

Push Frame

$\mathrm{F}[0]=$ Init
$\mathrm{F}[1]=\neg S 9 \wedge \neg S 7 \wedge \neg S 8$
$\mathrm{F}[2]=\neg S 9$
F[3] = True

IC3 Example

$F[3] \wedge \neg P$ is SAT, proof obligation $(\mathrm{S} 9,3)$
$F[0]=$ Init
$\mathrm{F}[1]=\neg S 9 \wedge \neg S 7 \wedge \neg S 8$
$\mathrm{F}[2]=\neg S 9$
F[3] = True

IC3 Example

$F[2] \wedge \neg S 9 \wedge S 9^{\prime}$ is SAT, proof obligation + generalization $(S 7 \vee S 8,2)$
$F[0]=$ Init
$\mathrm{F}[1]=\neg S 9 \wedge \neg S 7 \wedge \neg S 8$
$\mathrm{F}[2]=\neg S 9$
F[3] = True

IC3 Example

$F[1] \wedge \neg(S 7 \vee S 8) \wedge\left(S 7^{\prime} \vee S 8^{\prime}\right)$ is SAT, proof obligation $(S 6,1)$
$F[0]=$ Init
$\mathrm{F}[1]=\neg S 9 \wedge \neg S 7 \wedge \neg S 8$
$\mathrm{F}[2]=\neg S 9$
F[3] = True

IC3 Example

$F[0] \wedge \neg S 6 \wedge S 6$ is UNSAT, block S6 and previous proof obligations
$\mathrm{F}[0]=$ Init
$\mathrm{F}[1]=\neg S 9 \wedge \neg S 7 \wedge \neg S 8 \wedge \neg S 6$
$\mathrm{F}[2]=\neg S 9 \wedge \neg S 7 \wedge \neg S 8$
$\mathrm{F}[3]=\neg S 9$

IC3 Example

$F[1]$ is inductive! Terminate with TRUE!
$F[0]=$ Init
$\mathrm{F}[1]=\neg S 9 \wedge \neg S 7 \wedge \neg S 8 \wedge \neg S 6$
$\mathrm{F}[2]=\neg S 9 \wedge \neg S 7 \wedge \neg S 8$
$\mathrm{F}[3]=\neg S 9$

IC3 In Practice

- Add extra invariant to algorithm: Clauses(F[i-1]) \subseteq Clauses(F[i])
- Requires some processing during the algorithm
- But, then inductiveness check is easier
- Every clause c in $\mathrm{F}[\mathrm{i}]$ was obtained with a relative inductive check
- So if $\mathrm{F}[\mathrm{i}-1]=\mathrm{F}[\mathrm{i}]$ syntactically then the set of clauses is inductive
- IC3 can be easily parallelized
- Instances of IC3 share produced lemmas, but not how they were obtained

IC3 in Practice

- Maintain a sequence of frames that are backward reachable from bad
- This is an underapproximation of states that can violate the property in up to k steps
- Property is false if the forward and backward frames ever contain the same state (intersect)
- This version of the algorithm introduces choice
- Previous model checking algorithms always had only one next step
- IC3 with two sets of frames can have multiple next steps (like a proof calculus)
- Many heuristics on when to apply which actions
- Plus many other optimizations, improvements and extensions (e.g. to SMT)

Intuition: Incremental vs Monolithic

- "When humans analyze systems, they produce a set of lemmas - typically inductive properties - that together imply the desired property. Each lemma holds relative to some subset of previously proved lemmas in that this prior knowledge is invoked in proving the new lemma. A given lemma usually focuses on just one aspect of the system"
- Aaron Bradley in SAT-based Model Checking Without Unrolling

Intuition: Distribution of Responsibility

- BMC puts all the work on the solver
- Interpolation-based Model Checking puts most the work on the solver
- IC3, by contrast, is relatively easy on the solver
- A typical IC3 run has tens of thousands (or more) calls to the solver checking for onestep inductiveness
- But, each call is easy
- A controlled SAT call that prioritizes local reasoning, as opposed to unrolling based approaches that consider an execution

Thank you!

