Model Checking

An Overview, Continued...

Goals

- Vocabulary
- High-level understanding of state-of-the-art algorithms
 - Could read the paper and understand it

Reference: https://www.eeweb.com/profile/adarbari/articles/a-brief-history-of-formal-verification

Outline

Review

Approximations and Inductive Invariants

Interpolation-based model checking

IC3/PDR

Review: What Is Model Checking

- An approach for verifying the temporal behavior of a system
- Primarily fully-automated ("push-button") techniques
- Model
 - Representation of the system
 - Need to decide the right level of granularity
- Specification
 - High-level desired property of system
- Considers infinite sequences
- PSPACE-complete for FSMs

Review: Symbolic Transition Systems in Practice

- States are made up of state variables $v \in V$
 - A state is an assignment to all variables
- A Transition System is (V, I, T)
 - V: a set of state variables, V' denotes next state variables
 - I: a set of initial states
 - T: a transition relation
 - $T(v_0, ..., v_n, v'_0, ..., v'_n)$ holds when there is a transition
 - Note: will often still use *s* to denote symbolic states (just know they're made up of variables)
- Symbolic state machine is built by translating another representation
 - E.g. a program, a mathematical model, a hardware description, etc...

Review: Symbolic Transition Systems in Practice

- States are made up of state variables $v \in V$
 - A state is an assignment to all variables
- A Transition System is (V, I, T)
 - V: a set of state variables, V' denotes next state variables
 - I: a set of initial states
 - T: a transition relation
 - $T(v_0, ..., v_n, v'_0, ..., v'_n)$ holds when there is a transition
 - Note: will often still use *s* to denote symbolic states (just know they're made up of variables)
- Symbolic state machine is built by translating another representation
 - E.g. a program, a mathematical model, a hardware description, etc...

Note: Will often use $s \coloneqq \langle v_0, ..., v_n \rangle$ to represent a state.

Will use a subscript for time when it matters

Might drop arguments in T

Review: Symbolic Transition System Example

- 2 variables: $V = \{v_0, v_1\}$
 - $S_0 \coloneqq \neg v_0 \land \neg v_1, S_1 \coloneqq \neg v_0 \land v_1$
 - $S_2 \coloneqq v_0 \land \neg v_1, \quad S_3 \coloneqq v_0 \land v_1$
- Transition relation $(\neg v_0 \land \neg v_1) \Rightarrow ((\neg v'_0 \land v'_1) \lor (v'_0 \land \neg v'_1)) \land$ $(\neg v_0 \land v_1) \Rightarrow (v'_0 \land v'_1) \land$ $(v_0 \land \neg v_1) \Rightarrow (v'_0 \land v'_1) \land$ $(v_0 \land v_1) \Rightarrow (v'_0 \land v'_1)$

Reminder: State Machine vs Execution

State Machine uses capitals

Symbolic execution uses lowercase

Concrete Execution:

s0=S0, s1=S2, s2=S3, s3=S3

BDD-based model checking

• Start with R = Init

Keep computing image and growing reachable states

Stop when there's a fixpoint (reachable states not growing)

- Can handle ~10²⁰ states
 - More with abstraction techniques and compositional model checking

Review: BMC Graphically

 s_0 must be an initial state

Check if it can violate the property at time k

Review: K-Induction Graphically

Review: Inductive Invariants

- The goal of most modern model checking algorithms
- Over finite-domain, just need to show that algorithm makes progress, and it will eventually find an inductive invariant
 - E.g. in the worst case, the reachable states are themselves an inductive invariant
 - Hopefully there's an easier to find inductive invariant that is sufficient
- Inductive Invariant: II
 - $Init(s) \Rightarrow II(s)$
 - $T(s,s') \land II(s) \Rightarrow II(s')$
 - $II(s) \Rightarrow P(s)$

Searching for Inductive Invariants

- Interpolant-based model checking
- IC3/PDR

- For the remainder of this talk, we're assuming *safety* properties
 - Can always perform liveness to safety transformation

Building Blocks: Approximations

Problems

- Explicit reachability computation (e.g. BDDs) is difficult
- Inductive invariants are difficult to find

- Solution (motivation for approximations)
 - Build approximations of reachable states
 - Iteratively refine it until inductive

What is an approximation?

- Actual reachable state set: R
- Over-approximation, $O: R \rightarrow O$
 - Proofs on over-approximation holds
 - Counterexamples can be spurious
- Under-approximation, $U: U \rightarrow R$
 - Proofs on under-approximation can be spurious
 - Counterexamples are real

Over-approximation

Exact States

Under-approximation

Craig Interpolation

• Given an unsatisfiable formula, $A \wedge B$

- Craig Interpolant, I
 - $A \rightarrow I$
 - $I \land B$ is UNSAT
 - $V(I) \subseteq V(A) \cap V(B)$
 - Where V returns the free variables (uninterpreted constants) of a formula
- We can use interpolants as over-approximations of A

Obtaining Craig Interpolants

- Mechanical over SAT
 - Label clauses in the proof
 - Some straightforward post-processing
- Non-trivial for SMT
 - But there are solvers that support it
 - MathSAT
 - Smt-Interpol
 - CVC4 through SyGuS

Obtaining Craig Interpolants

- Not all theories admit (quantifier-free) interpolants
 - Arrays do not guarantee quantifier-free interpolants

• Example: $A \coloneqq a = store(b, i, e)$ $B \coloneqq select(a, j) \neq select(b, j) \land select(a, k) \neq select(b, k) \land j \neq k$ $V(A) \cap V(B) \coloneqq \{a, b\}$

 There is an extension to the array theory for supporting quantifier free interpolants: "Quantifier-Free Interpolation of a Theory of Arrays"

Interpolant-based Model Checking

- Big picture
 - Perform BMC
 - Iteratively compute and refine an over-approximation of states reachable in k steps
 - If it becomes inductive, you're done

Interpolants for Abstraction from BMC Run

- Obtain interpolant, *I*, from an unsat BMC run with A and B as shown below
- Useful properties
 - I over-approximates A, i.e. states reachable in one-step from Init: $A \rightarrow I$
 - There are no states reachable in k 1 steps from I that violate the property: $I \wedge B$ UNSAT
 - I only contains symbols from one time step (time 1): $V(I) \subseteq V(A) \cap V(B)$

Init
$$\land T(s_0, s_1)$$

 $T(s_1, s_2) \land \dots \land T(s_{k-1}, s_k) \land \neg P(s_k)$
A B

Interpolation-based Model Checking

```
if check(Init \land T(s_0, s_1) \land (\neg P(s_0) \lor \neg P(s_1))
     return False
R = Init, k=2
while True
     A \coloneqq R \wedge T(s_0, s_1), B \coloneqq \neg P(s_k) \wedge \bigwedge_{i=1}^{k-1} T(s_i, s_{i+1})
     if check(A \land B)
           if R == Init
                 return False
           else
                   k++
     else
           I = get_interpolant()
           R = R \vee I[1/0] // map symbols at 1 to symbols at 0
            if \negcheck(R \land T(s_0, s_1) \land \neg R(s_1))
                   return True
```

R over-approx Bad $P = \neg S9$

Interpolant-based Model Checking Example

Start – can't violate in 2 steps

• k = 2

• k = 2

k = 2, can reach S9 in 2 steps from R

• k = 3

• k = 3

• k = 3, interpolant guarantees property not violated in $k-1 \rightarrow 2$ steps

• Terminate with True!

Interpolant-based model checking

- Advantages
 - Approximate reachability
 - Clever refinements
- Disadvantages
 - Requires unrolling (can become expensive)
 - Needs to restart every time k is incremented
 - Refinements are clever, but not directly targeting induction

IC3 / PDR

- State-of-the-art model checking approach for proofs
- It can also find bugs faster than BMC in some cases

- For the purposes of the talk, focus on SAT
 - Has been extended to SMT, but it's more complicated
 - Covering the simplest version of SAT-based IC3
 - Hybrid of original IC3 paper and PDR paper

IC3: Vocabulary

- Inductive Candidate: C
 - $Init(s) \Rightarrow C(s)$ In
 - $T(s,s') \land C(s) \Rightarrow C(s')$

Initiation

Clause

C(s') Consecution

- Manipulating variables
 - $v_0 \vee \neg v_2 \vee v_8$
 - $\neg v_0 \land v_2 \land \neg v_8$

Cube (inverse of clause)

- State
 - $s = v_0 \land \neg v_1 \land \cdots \land v_n$

Cube over all variables (aka a "minterm")

x = 1; y = 1; while *: y = y + x; x = x + 1;

Property: $y \ge 1$

IC3: Vocabulary

- Counterexample to Induction (CTI)
 - Model assignment from failed consecution
- Attempt consecution on this program using property as inductive candidate

P'

- E.g. k-induction for k = 1
- $y \ge 1 \land x' = x + 1 \land y' = y + x \land \neg(y' \ge 1)$ is SAT (consecution fails)
 - P transition relation

x = 1; y = 1; while *: y = y + x; x = x + 1;

IC3: Relative Induction

Property: $y \ge 1$

• Property $y \ge 1$ is not inductive

- System does have an easy invariant: $\phi := x \ge 0$
 - $x \ge 0$ true in the initial state

Ρ

φ

• $x \ge 0 \land x' = x + 1 \land y' = y + x \land \neg(x' \ge 0)$ is UNSAT (inductive proof)

P'

• Property $y \ge 1$ is inductive *relative* to this invariant, ϕ

•
$$x \ge 0 \land y \ge 1 \land x' = x + 1 \land y' = y + x \land \neg(y' \ge 1)$$
 is UNSAT

transition relation

High-level Idea

- Build a sequence of over-approximations (e.g. formulas)
 - Sequence of *frames*, F
 - where F[k] is an over-approximation of the states reachable in k steps
 - Frames are in CNF
- Refine these frames using CTIs
- When there is an F[i] that is (one-step) inductive, you are done
- If the property is false, you'll discover that when trying to refine a frame

Another View

- What are frames?
 - F[k] over-approximates the states reachable in k steps

- Alternatively,
 - F[k] contains a "guess" at invariants
 - They don't hold inductively yet
 - But, they hold for up to k steps
 - i.e. they seem like reasonable guesses for an invariant

IC3: Details

- IC3 maintains the following invariants on its frames:
 - F[0] = Init
 - $F[i] \land T \rightarrow F[i+1]$ for $0 \le i < k$
 - $F[i] \rightarrow P$ for $0 \le i < k$
- Note that F[k] does not necessarily imply P
 - We iteratively refine it until it does imply P,

IC3: Proof Obligations

- Proof obligation (s, i)
 - Cube s at frame i
- Handling proof obligations: Check $F[i-1] \land \neg s \land T \land s'$
 - If UNSAT
 - $\neg s$ is inductive relative to F[i-1] (aka not reachable in one-step from F[i-1]
 - If SAT, get a CTI
 - $\exists c . F[i-1] \land \neg s \land c \land T \to s'$
 - There's a state contained in F[i-1] that reaches s' in one step
 - Add proof obligation (c, i 1) and recurse

Case 1: Counterexample

Case 1: Counterexample – obtain trace from recursive proof obligations

F[0] = Init	s ₀ reachable from Init		
F[1]	$(s_1, 1)$ obtained from $F[1] \land \neg s_2 \land T \land s_2'$		
F[2] :	(s_2 , 2) obtained from $F[2] \land \neg s_3 \land T \land s_3'$:		
F[k]	(s_k, k) obtained from $F[k] \wedge \neg P'$		

• Case 2: s is not reachable

F[0] =	= Init						
F[1]			(<i>s</i> ₁ , 1)				
F[2] :			(<i>s</i> ₂ , 2)				
F[k]			(s _k , k)	obtair	ned from F	$[k] \land \neg P'$	

• Case 2: s is not reachable

F[0] = Init s_0 not reachable		s ₀ not reachable from Init
F[1]		(<i>s</i> ₁ , 1)
F[2] :		(s ₂ , 2) :
F[k]		(s_k, k) obtained from $F[k] \land \neg P'$

• Case 2: s is not reachable

F[0] = Init	s_0 not reachable from Init	block in F[1]
F[1]	(<i>s</i> ₁ , 1)	
F[2] :	(s ₂ , 2)	
F[k]	(s_k, k) obtained from $F[k] \land \neg P'$	

Case 2: s is not reachable – refined frames

F[0] = Init	s_0 not reachable from Init	block in F[1]
F[1]	(<i>s</i> ₁ , 1)	block in F[2]
F[2] :	(s ₂ , 2) :	block in F[3]
F[k]	(s_k, k) obtained from $F[k] \wedge \neg P'$	blocked by recursion

IC3 Main Loop

```
while SAT ? [F[k] \land \neg P]
```

```
extract a bad state, s
```

```
recursively block proof obligation (s, k)
```

Termination conditions:

- 1. For some i, F[i] is inductive: Property is TRUE
- 2. Pushed proof obligation to Init: Property is FALSE

Congratulations!

• You made it through the IC3 explanation!!

Congratulations!

• You made it through the IC3 explanation!!

- But you might be wondering, is that it?
 - We CAN'T just be blocking one state at a time, right?

Generalization

- For counterexample to induction, s
 - Before creating a proof obligation: (s, i)
 - Generalize s to cover more states
- Recall, the more literals in a cube s, the less states it covers
- Several generalization techniques
 - Simplest one: ternary simulation
 - Get model, replace one literal with X and simulate
 - If no X makes it to next state, then that literal is unnecessary (drop it)

IC3 Example

Init does not intersect with bad state

IC3 Example

Push Frame

F[0] = Init

F[1] = True

IC3 Example

 $F[1] \land \neg P$ is SAT, proof obligation (S9, 1)

IC3 Example

 $F[0] \land \neg S9 \land S9'$ is UNSAT, block S9 F[0] = Init**S**6 **S**7 $F[1] = \neg S9$ **S**1 **S**5 S9 **S**0 S2 **S**8 **S**3 S4

IC3 Example

IC3 Example

 $F[2] \land \neg P$ is SAT, proof obligation (S9, 2)

IC3 Example

 $F[1] \land \neg S9 \land S9'$ is SAT, proof obligation + generalization (S7 $\lor S8$, 1)

IC3 Example

 $F[0] \land \neg(S7 \lor S8) \land (S7' \lor S8')$ is UNSAT, block $S7 \lor S8$

IC3 Example

Push Frame F[0] = Init**S**6 **S**7 $\mathsf{F}[1] = \neg S9 \land \neg S7 \land \neg S8$ **S1** F[2] = ¬*S*9 **S**5 S9 F[3] = True**S**0 **S**2 **S**8 **S**3 **S**4

IC3 Example

 $F[3] \land \neg P$ is SAT, proof obligation (S9, 3)

IC3 Example

 $F[2] \land \neg S9 \land S9'$ is SAT, proof obligation + generalization (S7 $\lor S8$, 2)

IC3 Example

 $F[1] \land \neg(S7 \lor S8) \land (S7' \lor S8')$ is SAT, proof obligation (S6, 1)

IC3 Example

 $F[0] \land \neg S6 \land S6$ is UNSAT, block S6 and previous proof obligations

IC3 Example

F[1] is inductive! Terminate with TRUE!

IC3 In Practice

- Add extra invariant to algorithm: Clauses(F[i-1]) ⊆ Clauses(F[i])
 - Requires some processing during the algorithm
 - But, then inductiveness check is easier
 - Every clause *c* in F[i] was obtained with a relative inductive check
 - So if F[i-1] = F[i] syntactically then the set of clauses is inductive
- IC3 can be easily parallelized
 - Instances of IC3 share produced lemmas, but not how they were obtained

IC3 in Practice

- Maintain a sequence of frames that are backward reachable from bad
 - This is an *underapproximation* of states that can violate the property in up to k steps
 - Property is false if the forward and backward frames ever contain the same state (intersect)
- This version of the algorithm introduces choice
 - Previous model checking algorithms always had only one next step
 - IC3 with two sets of frames can have multiple next steps (like a proof calculus)
 - Many heuristics on when to apply which actions
- Plus many other optimizations, improvements and extensions (e.g. to SMT)

Intuition: Incremental vs Monolithic

 "When humans analyze systems, they produce a set of lemmas — typically inductive properties — that together imply the desired property. Each lemma holds relative to some subset of previously proved lemmas in that this prior knowledge is invoked in proving the new lemma. A given lemma usually focuses on just one aspect of the system"

- Aaron Bradley in SAT-based Model Checking Without Unrolling

Intuition: Distribution of Responsibility

- BMC puts all the work on the solver
- Interpolation-based Model Checking puts most the work on the solver
- IC3, by contrast, is relatively easy on the solver
 - A typical IC3 run has tens of thousands (or more) calls to the solver checking for onestep inductiveness
 - But, each call is easy
 - A controlled SAT call that prioritizes local reasoning, as opposed to unrolling based approaches that consider an execution

Thank you!