Nelson-Open Theory Combination

Aleksandar Zeljić
Materials by Clark Barrett, Stanford University
CS357: October 2019

Acknowledgments: Many thanks to Cesare Tinelli and Albert Oliveras for contributing some of the material used in these slides.

Disclamer: The literature on SMT and its applications is vast. The bibliographic references provided here are just a sample. Apologies to all authors whose work is not cited.

Combining Theories

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

$$
\begin{aligned}
& a \approx b+2 \wedge A \approx \operatorname{write}(B, a+1,4) \wedge \\
& (\operatorname{read}(A, b+3) \approx 2 \vee f(a-1) \neq f(b+1))
\end{aligned}
$$

Solving that formula requires reasoning over

- the theory of linear arithmetic (T_{L})
of the theory of amays (TT)
- the theory of uninterpreted functions (T

Question: Given solvers for each theory, can we combine them
-intorneror

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

$$
\begin{aligned}
& a \approx b+2 \wedge A \approx \operatorname{write}(B, a+1,4) \wedge \\
& (\operatorname{read}(A, b+3) \approx 2 \vee f(a-1) \neq f(b+1))
\end{aligned}
$$

Solving that formula requires reasoning over

- the theory of linear arithmetic $\left(T_{\mathrm{LA}}\right)$
- the theory of arrays $\left(T_{\mathrm{A}}\right)$
- the theory of uninterpreted functions (T_{UF})
\qquad

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

$$
\begin{aligned}
& a \approx b+2 \wedge A \approx \operatorname{write}(B, a+1,4) \wedge \\
& (\operatorname{read}(A, b+3) \approx 2 \vee f(a-1) \neq f(b+1))
\end{aligned}
$$

Solving that formula requires reasoning over

- the theory of linear arithmetic $\left(T_{\mathrm{LA}}\right)$
- the theory of arrays $\left(T_{\mathrm{A}}\right)$
- the theory of uninterpreted functions (T_{UF})

Question: Given solvers for each theory, can we combine them modularly into one for $T_{\mathrm{LA}} \cup T_{\mathrm{A}} \cup T_{\mathrm{UF}}$?

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

$$
\begin{aligned}
& a \approx b+2 \wedge A \approx \operatorname{write}(B, a+1,4) \wedge \\
& (\operatorname{read}(A, b+3) \approx 2 \vee f(a-1) \neq f(b+1))
\end{aligned}
$$

Solving that formula requires reasoning over

- the theory of linear arithmetic $\left(T_{\mathrm{LA}}\right)$
- the theory of arrays $\left(T_{\mathrm{A}}\right)$
- the theory of uninterpreted functions (T_{UF})

Question: Given solvers for each theory, can we combine them modularly into one for $T_{\mathrm{LA}} \cup T_{\mathrm{A}} \cup T_{\mathrm{UF}}$?

Under certain conditions, we can do it with the Nelson-Oppen combination method [NO79, Opp80]

Motivating Example (Convex Case)

Consider the following set of literals over $T_{\mathrm{LRA}} \cup T_{\mathrm{UF}}$ ($T_{\text {LRA }}$, linear real arithmetic):

$$
\begin{aligned}
f(f(x)-f(y)) & =a \\
f(0) & >a+2 \\
x & =y
\end{aligned}
$$

Motivating Example (Convex Case)

Consider the following set of literals over $T_{\text {LRA }} \cup T_{\text {UF }}$
($T_{\text {LRA }}$, linear real arithmetic):

$$
\begin{aligned}
f(f(x)-f(y)) & =a \\
f(0) & >a+2 \\
x & =y
\end{aligned}
$$

First step: purify literals so that each belongs to a single theory

Motivating Example (Convex Case)

Consider the following set of literals over $T_{\mathrm{LRA}} \cup T_{\mathrm{UF}}$
($T_{\text {LRA }}$, linear real arithmetic):

$$
\begin{aligned}
f(f(x)-f(y)) & =a \\
f(0) & >a+2 \\
x & =y
\end{aligned}
$$

First step: purify literals so that each belongs to a single theory

$$
\begin{aligned}
f(f(x)-f(y))=a \quad \Longrightarrow \quad f\left(e_{1}\right) & =a \\
e_{1} & =f(x)-f(y)
\end{aligned} \quad \Longrightarrow \begin{aligned}
f\left(e_{1}\right) & =a \\
e_{1} & =e_{2}-e_{3} \\
e_{2} & =f(x) \\
e_{3} & =f(y)
\end{aligned}
$$

Motivating Example (Convex Case)

Consider the following set of literals over $T_{\mathrm{LRA}} \cup T_{\mathrm{UF}}$ ($T_{\text {LRA }}$, linear real arithmetic):

$$
\begin{aligned}
f(f(x)-f(y)) & =a \\
f(0) & >a+2 \\
x & =y
\end{aligned}
$$

First step: purify literals so that each belongs to a single theory

$$
\begin{aligned}
& f(0)>a+2 \Longrightarrow f\left(e_{4}\right)>a+2 \quad \Longrightarrow \quad f\left(e_{4}\right)=e_{5} \\
& e_{4}=0
\end{aligned}
$$

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

$$
\begin{array}{cc}
L_{1} & L_{2} \\
\hline f\left(e_{1}\right)=a & e_{2}-e_{3}=e_{1} \\
f(x)=e_{2} & e_{4}=0 \\
f(y)=e_{3} & e_{5}>a+2 \\
f\left(e_{4}\right)=e_{5} & \\
x=y &
\end{array}
$$

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

$$
\begin{array}{cc}
L_{1} & L_{2} \\
\hline f\left(e_{1}\right)=a & e_{2}-e_{3}=e_{1} \\
f(x)=e_{2} & e_{4}=0 \\
f(y)=e_{3} & e_{5}>a+2 \\
f\left(e_{4}\right)=e_{5} & \\
x=y &
\end{array}
$$

$$
L_{1} \models_{\mathrm{UF}} e_{2}=e_{3}
$$

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

$$
\begin{array}{cc}
L_{1} & L_{2} \\
\hline f\left(e_{1}\right)=a & e_{2}-e_{3}=e_{1} \\
f(x)=e_{2} & e_{4}=0 \\
f(y)=e_{3} & e_{5}>a+2 \\
f\left(e_{4}\right)=e_{5} & e_{2}=e_{3} \\
x=y &
\end{array}
$$

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

$$
\begin{array}{cc}
L_{1} & L_{2} \\
\hline f\left(e_{1}\right)=a & e_{2}-e_{3}=e_{1} \\
f(x)=e_{2} & e_{4}=0 \\
f(y)=e_{3} & e_{5}>a+2 \\
f\left(e_{4}\right)=e_{5} & e_{2}=e_{3} \\
x=y &
\end{array}
$$

$$
L_{2} \models_{\mathrm{LRA}} e_{1}=e_{4}
$$

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

$$
\begin{array}{cc}
L_{1} & L_{2} \\
\hline f\left(e_{1}\right)=a & e_{2}-e_{3}=e_{1} \\
f(x)=e_{2} & e_{4}=0 \\
f(y)=e_{3} & e_{5}>a+2 \\
f\left(e_{4}\right)=e_{5} & e_{2}=e_{3} \\
x=y & \\
e_{1}=e_{4} &
\end{array}
$$

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

$$
\begin{array}{cc}
L_{1} & L_{2} \\
\hline f\left(e_{1}\right)=a & e_{2}-e_{3}=e_{1} \\
f(x)=e_{2} & e_{4}=0 \\
f(y)=e_{3} & e_{5}>a+2 \\
f\left(e_{4}\right)=e_{5} & e_{2}=e_{3} \\
x=y & \\
e_{1}=e_{4} &
\end{array}
$$

$$
L_{1} \models \mathrm{UF} a=e_{5}
$$

Third step: check for satisfiability locally

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

$$
\begin{array}{cc}
L_{1} & L_{2} \\
\hline f\left(e_{1}\right)=a & e_{2}-e_{3}=e_{1} \\
f(x)=e_{2} & e_{4}=0 \\
f(y)=e_{3} & e_{5}>a+2 \\
f\left(e_{4}\right)=e_{5} & e_{2}=e_{3} \\
x=y & a=e_{5} \\
e_{1}=e_{4} &
\end{array}
$$

Third step: check for satisfiability locally

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

$$
\begin{array}{cc}
L_{1} & L_{2} \\
\hline f\left(e_{1}\right)=a & e_{2}-e_{3}=e_{1} \\
f(x)=e_{2} & e_{4}=0 \\
f(y)=e_{3} & e_{5}>a+2 \\
f\left(e_{4}\right)=e_{5} & e_{2}=e_{3} \\
x=y & a=e_{5} \\
e_{1}=e_{4} &
\end{array}
$$

Third step: check for satisfiability locally
$L_{1} \not \vDash_{\mathrm{UF}} \perp$
$L_{2} \models_{\text {LRA }} \perp$

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over shared constants $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, a$

$$
\begin{array}{cc}
L_{1} & L_{2} \\
\hline f\left(e_{1}\right)=a & e_{2}-e_{3}=e_{1} \\
f(x)=e_{2} & e_{4}=0 \\
f(y)=e_{3} & e_{5}>a+2 \\
f\left(e_{4}\right)=e_{5} & e_{2}=e_{3} \\
x=y & a=e_{5} \\
e_{1}=e_{4} &
\end{array}
$$

Third step: check for satisfiability locally
$L_{1} \not \vDash_{\mathrm{UF}} \perp$
$L_{2} \models_{\text {LRA }} \perp$
Report unsatisfiable

Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over $T_{\mathrm{LIA}} \cup T_{\mathrm{UF}}$ ($T_{\text {LIA }}$, linear integer arithmetic):

$$
\begin{aligned}
1 \leq & x \\
f(1) & =a \\
f(2) & =f(1)+3 \\
a & =b+2
\end{aligned}
$$

First step: purify literals so that each belongs to a single theory

Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over $T_{\mathrm{LIA}} \cup T_{\mathrm{UF}}$ ($T_{\text {LIA }}$, linear integer arithmetic):

$$
\begin{aligned}
1 \leq & x \leq 2 \\
f(1) & =a \\
f(2) & =f(1)+3 \\
a & =b+2
\end{aligned}
$$

First step: purify literals so that each belongs to a single theory

Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over $T_{\text {LIA }} \cup T_{\mathrm{UF}}$ ($T_{\text {LIA }}$, linear integer arithmetic):

$$
\begin{aligned}
1 \leq & x \\
f(1) & =a \\
f(2) & =f(1)+3 \\
a & =b+2
\end{aligned}
$$

First step: purify literals so that each belongs to a single theory

$$
\begin{aligned}
f(1)=a \quad \Longrightarrow \quad f\left(e_{1}\right) & =a \\
e_{1} & =1
\end{aligned}
$$

Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over $T_{\text {LIA }} \cup T_{\mathrm{UF}}$ ($T_{\text {LIA }}$, linear integer arithmetic):

$$
\begin{aligned}
1 \leq & x \leq 2 \\
f(1) & =a \\
f(2) & =f(1)+3 \\
a & =b+2
\end{aligned}
$$

First step: purify literals so that each belongs to a single theory

$$
\begin{aligned}
f(2)=f(1)+3 \quad e_{2} & =2 \\
f\left(e_{2}\right) & =e_{3} \\
f\left(e_{1}\right) & =e_{4} \\
e_{3} & =e_{4}+3
\end{aligned}
$$

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

L_{1}	L_{2}
$1 \leq x$	$f\left(e_{1}\right)=a$
$x \leq 2$	$f(x)=b$
$e_{1}=1$	$f\left(e_{2}\right)=e_{3}$
$a=b+2$	$f\left(e_{1}\right)=e_{4}$
$e_{2}=2$	
$e_{3}=e_{4}+3$	
$a=e_{4}$	

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

L_{1}	L_{2}
$1 \leq x$	$f\left(e_{1}\right)=a$
$x \leq 2$	$f(x)=b$
$e_{1}=1$	$f\left(e_{2}\right)=e_{3}$
$a=b+2$	$f\left(e_{1}\right)=e_{4}$
$e_{2}=2$	
$e_{3}=e_{4}+3$	
$a=e_{4}$	

No more entailed equalities, but $L_{1} \models_{\text {LIA }} x=e_{1} \vee x=e_{2}$

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

$$
\begin{aligned}
& \begin{array}{rc}
L_{1} & L_{2} \\
\hline 1 \leq x & f\left(e_{1}\right)=a
\end{array} \\
& x \leq 2 \quad f(x)=b \\
& e_{1}=1 \quad f\left(e_{2}\right)=e_{3} \\
& a=b+2 \quad f\left(e_{1}\right)=e_{4} \\
& e_{2}=2 \\
& e_{3}=e_{4}+3 \\
& a=e_{4}
\end{aligned}
$$

Consider each case of $x=e_{1} \vee x=e_{2}$ separately

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

L_{1}	L_{2}
$1 \leq x$	$f\left(e_{1}\right)=a$
$x \leq 2$	$f(x)=b$
$e_{1}=1$	$f\left(e_{2}\right)=e_{3}$
$a=b+2$	$f\left(e_{1}\right)=e_{4}$
$e_{2}=2$	
$e_{3}=e_{4}+3$	
$a=e_{4}$	

Case 1) $x=e_{1}$

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

L_{1}	L_{2}
$1 \leq x$	$f\left(e_{1}\right)=a$
$x \leq 2$	$f(x)=b$
$e_{1}=1$	$f\left(e_{2}\right)=e_{3}$
$a=b+2$	$f\left(e_{1}\right)=e_{4}$
$e_{2}=2$	$x=e_{1}$
$e_{3}=e_{4}+3$	
$a=e_{4}$	
$x=e_{1}$	

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

\[

\]

$L_{2} \models_{\text {UF }} a=b$, which entails \perp when sent to L_{1}

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

L_{1}	L_{2}
$1 \leq x$	$f\left(e_{1}\right)=a$
$x \leq 2$	$f(x)=b$
$e_{1}=1$	$f\left(e_{2}\right)=e_{3}$
$a=b+2$	$f\left(e_{1}\right)=e_{4}$
$e_{2}=2$	
$e_{3}=e_{4}+3$	
$a=e_{4}$	

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

L_{1}	L_{2}
$1 \leq x$	$f\left(e_{1}\right)=a$
$x \leq 2$	$f(x)=b$
$e_{1}=1$	$f\left(e_{2}\right)=e_{3}$
$a=b+2$	$f\left(e_{1}\right)=e_{4}$
$e_{2}=2$	
$e_{3}=e_{4}+3$	
$a=e_{4}$	

Case 2) $x=e_{2}$

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

L_{1}	L_{2}
$1 \leq x$	$f\left(e_{1}\right)=a$
$x \leq 2$	$f(x)=b$
$e_{1}=1$	$f\left(e_{2}\right)=e_{3}$
$a=b+2$	$f\left(e_{1}\right)=e_{4}$
$e_{2}=2$	$x=e_{2}$
$e_{3}=e_{4}+3$	
$a=e_{4}$	
$x=e_{2}$	

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared constants $x, e_{1}, a, b, e_{2}, e_{3}, e_{4}$

L_{1}	L_{2}
$1 \leq x$	$f\left(e_{1}\right)=a$
$x \leq 2$	$f(x)=b$
$e_{1}=1$	$f\left(e_{2}\right)=e_{3}$
$a=b+2$	$f\left(e_{1}\right)=e_{4}$
$e_{2}=2$	$x=e_{2}$
$e_{3}=e_{4}+3$	
$a=e_{4}$	
$x=e_{2}$	

$L_{2} \models_{\text {UF }} e_{3}=b$, which entails \perp when sent to L_{1}

The Nelson-Oppen Method

- For $i=1,2$, let T_{i} be a first-order theory of signature Σ_{i} (set of function and predicate symbols in T_{i} other than $=$)
- Let $T=T_{1} \cup T_{2}$
- Let \mathcal{C} be a finite set of free constants (i.e., not in $\Sigma_{1} \cup \Sigma_{2}$)

We consider only input problems of the form
where each L_{i} is a finite set of ground (i.e., variable-free)

Note: Because of purification, there is no loss of generality in considering

The Nelson-Oppen Method

- For $i=1,2$, let T_{i} be a first-order theory of signature Σ_{i} (set of function and predicate symbols in T_{i} other than =)
- Let $T=T_{1} \cup T_{2}$
- Let \mathcal{C} be a finite set of free constants (i.e., not in $\Sigma_{1} \cup \Sigma_{2}$)

We consider only input problems of the form

$$
L_{1} \cup L_{2}
$$

where each L_{i} is a finite set of ground (i.e., variable-free) $\left(\Sigma_{i} \cup \mathcal{C}\right)$-literals

The Nelson-Oppen Method

- For $i=1,2$, let T_{i} be a first-order theory of signature Σ_{i} (set of function and predicate symbols in T_{i} other than =)
- Let $T=T_{1} \cup T_{2}$
- Let \mathcal{C} be a finite set of free constants (i.e., not in $\Sigma_{1} \cup \Sigma_{2}$)

We consider only input problems of the form

$$
L_{1} \cup L_{2}
$$

where each L_{i} is a finite set of ground (i.e., variable-free) $\left(\Sigma_{i} \cup \mathcal{C}\right)$-literals

Note: Because of purification, there is no loss of generality in considering only ground $\left(\Sigma_{i} \cup \mathcal{C}\right)$-literals

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:
sat or unsat

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: $\quad L_{1} \cup L_{2}$ with L_{i} finite set of ground $\left(\Sigma_{i} \cup \mathcal{C}\right)$-literals
Output: sat or unsat

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: $\quad L_{1} \cup L_{2}$ with L_{i} finite set of ground $\left(\Sigma_{i} \cup \mathcal{C}\right)$-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and disequalities over \mathcal{C} such that

$$
c=d \in A \text { or } c \neq d \in A \text { for all } c, d \in \mathcal{C}
$$

3. Otherwise, return sat

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: $\quad L_{1} \cup L_{2}$ with L_{i} finite set of ground $\left(\Sigma_{i} \cup \mathcal{C}\right)$-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and disequalities over \mathcal{C} such that

$$
c=d \in A \text { or } c \neq d \in A \text { for all } c, d \in \mathcal{C}
$$

2. If $L_{i} \cup A$ is T_{i}-unsatisfiable for $i=1$ or $i=2$, return unsat Otherwise, return sat

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: $\quad L_{1} \cup L_{2}$ with L_{i} finite set of ground $\left(\Sigma_{i} \cup \mathcal{C}\right)$-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and disequalities over \mathcal{C} such that

$$
c=d \in A \text { or } c \neq d \in A \text { for all } c, d \in \mathcal{C}
$$

2. If $L_{i} \cup A$ is T_{i}-unsatisfiable for $i=1$ or $i=2$, return unsat
3. Otherwise, return sat

Correctness of the NO Method

Proposition (Termination) The method is terminating.
(Trivially, because there is only a finite number of arrangements to guess)

Proposition (Soundness) If the method returns unsat for every
arrancrement the innnt ic (T | | Th) -uncaticfiable

Proposition (Completeness) If Σ_{1}
infinite whan the mathod motrume ast for some arrangement, the input

Correctness of the NO Method

Proposition (Termination) The method is terminating.
(Trivially, because there is only a finite number of arrangements to guess)

Proposition (Soundness) If the method returns unsat for every arrangement, the input is $\left(T_{1} \cup T_{2}\right)$-unsatisfiable.
(Because satisfiability in $\left(T_{1} \cup T_{2}\right)$ is always preserved)

Proposition (Completeness) If $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ and T_{1} and

Correctness of the NO Method

Proposition (Termination) The method is terminating.
(Trivially, because there is only a finite number of arrangements to guess)

Proposition (Soundness) If the method returns unsat for every arrangement, the input is $\left(T_{1} \cup T_{2}\right)$-unsatisfiable.
(Because satisfiability in $\left(T_{1} \cup T_{2}\right)$ is always preserved)

Proposition (Completeness) If $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ and T_{1} and T_{2} are stably infinite, when the method returns sat for some arrangement, the input is ($T_{1} \cup T_{2}$)-is satisfiable.

Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T-satisfiable formula is satisfiable in an infinite model of T

Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T-satisfiable formula is satisfiable in an infinite model of T

Many interesting theories are stably infinite:

- Theories of an infinite structure (e.g., integer arithmetic)
- Complete theories with an infinite model (e.g., theory of dense linear orders, theory of lists)
- Convex theories (e.g., EUF, linear real arithmetic)

Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T-satisfiable formula is satisfiable in an infinite model of T

Many interesting theories are stably infinite:

- Theories of an infinite structure (e.g., integer arithmetic)
- Complete theories with an infinite model (e.g., theory of dense linear orders, theory of lists)
- Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals
$L \models_{T} s_{1}=t_{1} \vee \cdots \vee s_{n}=t_{n} \Longrightarrow L \models_{T} s_{i}=t_{i}$ for some i

Note: With convex theories, arrangements do not need to be guessed-they can be computed by (theory) propagation

Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T-satisfiable formula is satisfiable in an infinite model of T

Other interesting theories are not stably infinite

- Theories with models of bounded cardinality
bounded length)
- Some equational/Horn theories

The Nelson-Oppen method has been extended to some classes of

Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T-satisfiable formula is satisfiable in an infinite model of T

Other interesting theories are not stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)
- Some equational/Horn theories

Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T-satisfiable formula is satisfiable in an infinite model of T

Other interesting theories are not stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)
- Some equational/Horn theories

The Nelson-Oppen method has been extended to some classes of non-stably infinite theories [TZ05, RRZ05, JB10]

SMT Solving with Multiple Theories

Let T_{1}, \ldots, T_{n} be theories with respective solvers S_{1}, \ldots, S_{n}

How can we integrate all of them cooperatively into a single SMT solver for $T=T_{1} \cup \cdots \cup T_{n}$?

SMT Solving with Multiple Theories

Let T_{1}, \ldots, T_{n} be theories with respective solvers S_{1}, \ldots, S_{n}

How can we integrate all of them cooperatively into a single SMT solver for $T=T_{1} \cup \cdots \cup T_{n}$?

Quick Solution:

1. Combine S_{1}, \ldots, S_{n} with Nelson-Oppen into a theory solver for T
2. Build a $\operatorname{DPLL}(T)$ solver as usual

SMT Solving with Multiple Theories

Let T_{1}, \ldots, T_{n} be theories with respective solvers S_{1}, \ldots, S_{n}

How can we integrate all of them cooperatively into a single SMT solver for $T=T_{1} \cup \cdots \cup T_{n}$?

Better Solution [Bar02, $\mathrm{BBC}^{+} 05 \mathrm{~b}$, BNOT06]:

1. Extend $\operatorname{DPLL}(T)$ to $\operatorname{DPLL}\left(T_{1}, \ldots, T_{n}\right)$
2. Lift Nelson-Oppen to the $\operatorname{DPLL}\left(X_{1}, \ldots, X_{n}\right)$ level
3. Build a $\operatorname{DPLL}\left(T_{1}, \ldots, T_{n}\right)$ solver

Modeling $\operatorname{DPLL}\left(T_{1}, \ldots, T_{n}\right)$ Abstractly

- Let $n=2$, for simplicity
- Let T_{i} be of signature Σ_{i} for $i=1,2$, with $\Sigma_{1} \cap \Sigma_{2}=\emptyset$
- Let \mathcal{C} be a set of free constants
- Assume wlog that each input literal has signature $\left(\Sigma_{1} \cup \mathcal{C}\right)$ or $\left(\Sigma_{2} \cup \mathcal{C}\right)$ (no mixed literals)
- Let $\mathrm{M} \mid i \stackrel{\text { def }}{=}\left\{\left(\Sigma_{i} \cup \mathcal{C}\right)\right.$-literals of M and their complement $\}$
- Let $\mathrm{I}(\mathrm{M}) \stackrel{\text { def }}{=}\left\{c=d \mid c, d\right.$ occur in $\mathcal{C},\left.\mathrm{M}\right|_{1}$ and $\left.\left.\mathrm{M}\right|_{2}\right\} \cup$

$$
\left\{c \neq d \mid c, d \text { occur in } \mathcal{C},\left.\mathrm{M}\right|_{1} \text { and }\left.\mathrm{M}\right|_{2}\right\}
$$

(interface literals)

Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide $\frac{l \in \operatorname{Lit}(\mathrm{~F}) \cup \mathrm{I}(\mathrm{M}) \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} \bullet l}$
Only change: decide on interface equalities as well

Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide $\frac{l \in \operatorname{Lit}(\mathrm{~F}) \cup \mathrm{I}(\mathrm{M}) \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} \bullet l}$
Only change: decide on interface equalities as well
T-Propagate $\frac{l \in \operatorname{Lit}(\mathrm{~F}) \cup \mathrm{I}(\mathrm{M}) \quad i \in\{1,2\} \quad \mathrm{M} \models_{T_{i}} l \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} l}$

Only change: propagate interface equalities as well, but reason locally in each T_{i}

Abstract DPLL Modulo Multiple Theories

T-Conflict

$$
\frac{\mathrm{C}=\mathrm{no} \quad l_{1}, \ldots, l_{n} \in \mathrm{M} \quad l_{1}, \ldots, l_{n} \models_{T_{i}} \perp \quad i \in\{1,2\}}{\mathrm{C}:=\bar{l}_{1} \vee \cdots \vee \bar{l}_{n}}
$$

T-Explain

$$
\begin{gathered}
\mathrm{C}=l \vee D \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \models_{T_{i}} \bar{l} \quad i \in\{1,2\} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \prec_{\mathrm{M}} \bar{l} \\
\mathrm{C}:=l_{1} \vee \cdots \vee l_{n} \vee D
\end{gathered}
$$

Only change: reason locally in each T_{i}

Abstract DPLL Modulo Multiple Theories

T-Conflict

$$
\frac{\mathrm{C}=\text { no } \quad l_{1}, \ldots, l_{n} \in \mathrm{M} \quad l_{1}, \ldots, l_{n} \models_{T_{i}} \perp \quad i \in\{1,2\}}{\mathrm{C}:=\bar{l}_{1} \vee \cdots \vee \bar{l}_{n}}
$$

T-Explain

$$
\begin{gathered}
\mathrm{C}=l \vee D \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \models_{T_{i}} \bar{l} \quad i \in\{1,2\} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \prec_{\mathrm{M}} \bar{l} \\
\mathrm{C}:=l_{1} \vee \cdots \vee l_{n} \vee D
\end{gathered}
$$

Only change: reason locally in each T_{i}
I-Learn

$$
\frac{\models_{T_{i}} l_{1} \vee \cdots \vee l_{n} \quad l_{1}, \ldots,\left.l_{n} \in \mathrm{M}\right|_{i} \cup \mathrm{I}(\mathrm{M}) \quad i \in\{1,2\}}{\mathrm{F}:=\mathrm{F} \cup\left\{l_{1} \vee \cdots \vee l_{n}\right\}}
$$

New rule: for entailed disjunctions of interface literals

Example - Convex Theories

$$
\begin{aligned}
& \underbrace{e_{2}=e_{3}}_{8} \underbrace{e_{1}=e_{4}}_{9} \underbrace{a=e_{5}}_{10}
\end{aligned}
$$

Example - Convex Theories

$$
\begin{aligned}
& F:=\underbrace{\overbrace{f\left(e_{1}\right)=a}^{e_{2}-e_{3}=e_{1}}}_{5} \overbrace{\underbrace{0}_{f(x)=e_{2}}}^{\overbrace{\underbrace{e_{4}=0}_{6}}^{1}} \wedge \underbrace{2}_{\underbrace{e_{f(y)=e_{3}}^{e_{5}>a+2}}_{6}} \wedge \overbrace{f\left(e_{4}\right)=e_{5}}^{3} \wedge \overbrace{x=y}^{4} \wedge \\
& \underbrace{e_{2}=e_{3}}_{8} \underbrace{e_{1}=e_{4}}_{9} \underbrace{a=e_{5}}_{10}
\end{aligned}
$$

Example - Convex Theories

$$
\begin{aligned}
& \underbrace{e_{2}=e_{3}}_{8} \underbrace{e_{1}=e_{4}}_{9} \quad \underbrace{a=e_{5}}_{10}
\end{aligned}
$$

Example - Convex Theories

$$
\begin{aligned}
& F:=\overbrace{f\left(e_{1}\right)=a}^{0} \wedge \overbrace{f(x)=e_{2}}^{1} \wedge \overbrace{f(y)=e_{3}}^{2} \wedge \overbrace{f\left(e_{4}\right)=e_{5}}^{3} \wedge \overbrace{x=y}^{4} \wedge \\
& \underbrace{e_{2}-e_{3}=e_{1}}_{5} \wedge \underbrace{e_{4}=0}_{6} \wedge \underbrace{e_{5}>a+2}_{7} \\
& \underbrace{e_{2}=e_{3}}_{8} \underbrace{e_{1}=e_{4}}_{9} \underbrace{a=e_{5}}_{10}
\end{aligned}
$$

M	F	C	rule
		F	no
01234567	F	no	by $\operatorname{Propagate}^{+}$
012345678	F	no	by T-Propagate $(1,2,4 \models \mathrm{UF} 8)$

Example - Convex Theories

$$
\begin{aligned}
& F:=\overbrace{f\left(e_{1}\right)=a}^{0} \wedge \overbrace{f(x)=e_{2}}^{1} \wedge \overbrace{f(y)=e_{3}}^{2} \wedge \overbrace{f\left(e_{4}\right)=e_{5}}^{3} \wedge \overbrace{x=y}^{4} \wedge \\
& \underbrace{e_{2}-e_{3}=e_{1}}_{5} \wedge \underbrace{e_{4}=0}_{6} \wedge \underbrace{e_{5}>a+2}_{7} \\
& \underbrace{e_{2}=e_{3}}_{8} \underbrace{e_{1}=e_{4}}_{9} \underbrace{a=e_{5}}_{10}
\end{aligned}
$$

M	F	C	rule
	F	no	
01234567	F	no	by Propagate ${ }^{+}$
012345678	F	no	by T-Propagate (1, 2, $4=$ UF 8)
0123456789	F	no	by T-Propagate ($5,6,8=$ LRA 9)

Example - Convex Theories

$$
\begin{aligned}
& F:=\overbrace{f\left(e_{1}\right)=a}^{0} \wedge \overbrace{f(x)=e_{2}}^{1} \wedge \overbrace{f(y)=e_{3}}^{2} \wedge \overbrace{f\left(e_{4}\right)=e_{5}}^{3} \wedge \overbrace{x=y}^{4} \wedge \\
& \underbrace{e_{2}-e_{3}=e_{1}}_{5} \wedge \underbrace{e_{4}=0}_{6} \wedge \underbrace{e_{5}>a+2}_{7} \\
& \underbrace{e_{2}=e_{3}}_{8} \underbrace{e_{1}=e_{4}}_{9} \underbrace{a=e_{5}}_{10}
\end{aligned}
$$

	M	F	C

Example - Convex Theories

$$
\begin{aligned}
F:=\underbrace{\overbrace{f\left(e_{1}\right)=a}^{e_{2}-e_{3}=e_{1}}}_{5} \wedge \overbrace{\overbrace{f(x)}^{0}=e_{2}}^{1} \wedge \underbrace{\overbrace{f(y)}^{\overbrace{f}}}_{\underbrace{e_{4}=0}_{6}} \wedge \underbrace{e_{5}>a+2}_{\underbrace{}_{7}}
\end{aligned} \wedge \overbrace{f\left(e_{4}\right)}^{3}=e_{5} \wedge \overbrace{x=y}^{4} \wedge .
$$

M	F	C	rule
	F	no	
01234567	F	no	by Propagate ${ }^{+}$
012345678	F	no	by T-Propagate (1, 2, $4=\begin{aligned} & \text { UF } \\ & \text { 8 }\end{aligned}$
0123456789	F	no	by T-Propagate ($5,6,8=$ LRA 9)
012345678910	F	no	by T-Propagate ($0,3,9=$ UF 10$)$
012345678910	F	$\overline{7} \vee \overline{10}$	by T-Conflict $\left(7,10 \models_{\text {LRA }} \perp\right.$)

Example - Convex Theories

$$
\begin{aligned}
& F:=\overbrace{f\left(e_{1}\right)=a}^{0} \wedge \overbrace{f(x)=e_{2}}^{1} \wedge \overbrace{f(y)=e_{3}}^{2} \wedge \overbrace{f\left(e_{4}\right)=e_{5}}^{3} \wedge \overbrace{x=y}^{4} \wedge \\
& \underbrace{e_{2}-e_{3}=e_{1}}_{5} \wedge \underbrace{e_{4}=0}_{6} \wedge \underbrace{e_{5}>a+2}_{7} \\
& \underbrace{e_{2}=e_{3}}_{8} \underbrace{e_{1}=e_{4}}_{9} \underbrace{a=e_{5}}_{10}
\end{aligned}
$$

M	F	C	rule
	F	no	
01234567	F	no	by Propagate ${ }^{+}$
012345678	F	no	by T-Propagate ($1,2,4=$ UF 8)
0123456789	F	no	by T-Propagate (5, 6, $8=$ LRA 9)
012345678910	F	no	by T-Propagate (0, 3, $9=$ UF 10$)$
012345678910	F	$\overline{7} \vee \overline{10}$	by T-Conflict $\left(7,10 \models_{\text {LRA }} \perp\right)$ by Fail

Example - Non-convex Theories

$$
\begin{aligned}
& F:=\overbrace{f\left(e_{1}\right)}^{0}=a \wedge \overbrace{f(x)=b}^{1} \wedge \overbrace{f\left(e_{2}\right)}^{2}=e_{3} \wedge \overbrace{f\left(e_{1}\right)=e_{4}}^{3} \wedge \\
& \underbrace{1 \leq x}_{4} \wedge \underbrace{x \leq 2}_{5} \wedge \underbrace{e_{1}=1}_{6} \wedge \underbrace{a=b+2}_{7} \wedge \underbrace{e_{2}=2}_{8} \wedge \underbrace{e_{3}=e_{4}+3}_{9} \\
& \underbrace{a=e_{4}}_{10} \underbrace{x=e_{1}}_{11} \quad \underbrace{x=e_{2}}_{12} \quad \underbrace{a=b}_{13}
\end{aligned}
$$

Example - Non-convex Theories

$$
\begin{aligned}
& F:=\overbrace{f\left(e_{1}\right)}^{0}=a \quad \overbrace{f(x)=b}^{1} \wedge \overbrace{f\left(e_{2}\right)=e_{3}}^{2} \wedge \overbrace{f\left(e_{1}\right)=e_{4}}^{3} \wedge \\
& \underbrace{1 \leq x}_{4} \wedge \underbrace{x \leq 2}_{5} \wedge \underbrace{e_{1}=1}_{6} \wedge \underbrace{a=b+2}_{7} \wedge \underbrace{e_{2}=2}_{8} \wedge \underbrace{e_{3}=e_{4}+3}_{9} \\
& \underbrace{a=e_{4}}_{10} \underbrace{x=e_{1}}_{11} \underbrace{x=e_{2}}_{12} \quad \underbrace{a=b}_{13} \\
& \begin{array}{ccc}
\mathrm{M} & \mathrm{~F} & \text { C rule } \\
F & \text { no }
\end{array}
\end{aligned}
$$

Example - Non-convex Theories

$$
\begin{aligned}
& F:=\overbrace{f\left(e_{1}\right)}^{0}=a \wedge \overbrace{f(x)=b}^{1} \wedge \overbrace{f\left(e_{2}\right)}^{2}=e_{3} \wedge \overbrace{f\left(e_{1}\right)=e_{4}}^{3} \wedge \\
& \underbrace{1 \leq x}_{4} \wedge \underbrace{x \leq 2}_{5} \wedge \underbrace{e_{1}=1}_{6} \wedge \underbrace{a=b+2}_{7} \wedge \underbrace{e_{2}=2}_{8} \wedge \underbrace{e_{3}=e_{4}+3}_{9} \\
& \underbrace{a=e_{4}}_{10} \underbrace{x=e_{1}}_{11} \quad \underbrace{x=e_{2}}_{12} \quad \underbrace{a=b}_{13}
\end{aligned}
$$

Example - Non-convex Theories

$$
\begin{aligned}
& F:=\overbrace{f\left(e_{1}\right)}^{0}=a<\overbrace{f(x)=b}^{1} \wedge \overbrace{f\left(e_{2}\right)}^{2}=e_{3} \wedge \overbrace{f\left(e_{1}\right)=e_{4}}^{3} \wedge \\
& \underbrace{1 \leq x}_{4} \wedge \underbrace{x \leq 2}_{5} \wedge \underbrace{e_{1}=1}_{6} \wedge \underbrace{a=b+2}_{7} \wedge \underbrace{e_{2}=2}_{8} \wedge \underbrace{e_{3}=e_{4}+3}_{9} \\
& \underbrace{a=e_{4}}_{10} \underbrace{x=e_{1}}_{11} \quad \underbrace{x=e_{2}}_{12} \quad \underbrace{a=b}_{13}
\end{aligned}
$$

M	F	C	rule
	F	no	
$0 \cdots 9$	F	no	by Propagate ${ }^{+}$
0.. 910	F	no	by T-Propagate (0, $3 \models$ UF 10)

Example - Non-convex Theories

$$
\begin{aligned}
& F:=\overbrace{f\left(e_{1}\right)}^{0}=a \wedge \overbrace{f(x)=b}^{1} \wedge \overbrace{f\left(e_{2}\right)}^{2} \overbrace{e_{3}}^{2} \wedge \overbrace{f\left(e_{1}\right)=e_{4}}^{3} \wedge \\
& \underbrace{1 \leq x}_{4} \wedge \underbrace{x \leq 2}_{5} \wedge \underbrace{e_{1}=1}_{6} \wedge \underbrace{a=b+2}_{7} \wedge \underbrace{e_{2}=2}_{8} \wedge \underbrace{e_{3}=e_{4}+3}_{9} \\
& \underbrace{a=e_{4}}_{10} \underbrace{x=e_{1}}_{11} \quad \underbrace{x=e_{2}}_{12} \quad \underbrace{a=b}_{13}
\end{aligned}
$$

M	F	C	rule
	F	no	
$0 \cdots 9$	F	no	by Propagate ${ }^{+}$
$0 \cdots 910$	$F-\overline{5}$	no	by T-Propagate ($0, \underline{3} \models=_{\text {UF }} 10$)
0... 910	$F, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by I-Learn $\left(\mid=\right.$ LIA ${ }^{\text {a }}$

Example - Non-convex Theories

$$
\begin{array}{rl}
F:= & \overbrace{f\left(e_{1}\right)}^{0}=a \\
\underbrace{1 \leq x}_{4}
\end{array} \overbrace{f(x)=b}^{1} \wedge \underbrace{x \leq 2}_{5} \wedge \overbrace{f\left(e_{2}\right)=e_{3}}^{2} \wedge \overbrace{\underbrace{}_{6}=\overbrace{f\left(e_{1}\right)=e_{4}}^{e_{1}=1}}^{\overbrace{6}} \wedge \underbrace{a=b+2}_{7} \wedge \underbrace{3}_{\underbrace{e_{2}=2}_{8}=2} \wedge \underbrace{e_{3}=e_{4}+3}_{9})
$$

M	F	C	rule
	F	no	
$0 \cdots 9$	F	no	by Propagate ${ }^{+}$
$0 \cdots 910$	F	no	by T-Propagate ($0,3 \neq \mathrm{UF} 10$)
0..9 910	$F, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by I-Learn $(\mid=$ LIA $\overline{4} \vee \overline{5} \vee 11 \vee 12)$
$0 \cdots 910 \bullet 11$	$F, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Decide

Example - Non-convex Theories

$$
\begin{aligned}
& \underbrace{a=e_{4}}_{10} \underbrace{x=e_{1}}_{11} \underbrace{x=e_{2}}_{12} \underbrace{a=b}_{13}
\end{aligned}
$$

M	F	C	rule
	F	no	
$0 \cdots 9$	F	no	by Propagate ${ }^{+}$
$0 \cdots 910$	F	no	by T-Propagate ($0, \underline{3} \models \mathrm{UF}$ - 10)
$0 \ldots 910$	$F, \overline{4} \vee \frac{5}{5} \vee 11 \vee 12$	no	by I-Learn $(\equiv$ LIA $4 \vee 5 \vee 11 \vee 12)$
$0 \cdots 910 \bullet 11$	$F, \overline{4} \vee \frac{5}{5} \vee 11 \vee 12$	no	by Decide
$0 \cdots 910 \bullet 1113$	$F, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by T-Propagate (0, 1, $11 \vDash$ UF 13)

Example - Non-convex Theories

$$
\begin{aligned}
& \underbrace{a=e_{4}}_{10} \underbrace{x=e_{1}}_{11} \underbrace{x=e_{2}}_{12} \underbrace{a=b}_{13}
\end{aligned}
$$

M	F	C	rule
	F	no	
$0 \cdots 9$	F	no	by Propagate ${ }^{+}$
$0 \cdots 910$	F	no	by T-Propagate ($0,3 \neq \mathrm{UF}$ (10)
$0 \ldots 910$	$F, \overline{4} \vee \frac{\overline{5}}{5} \vee 11 \vee 12$	no	by I-Learn ($\mid=$ LIA $\left.\overline{4} \vee \frac{5}{5} \vee 11 \vee 12\right)$
$0 \cdots 910 \bullet 11$	$F, \underline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Decide
$0 \cdots 910 \bullet 1113$	$F, \overline{4} \vee \frac{5}{5} \vee 11 \vee 12$	$\overline{7}$ no	by T-Propagate ($0,1,11 \vDash$ UF 13)
0.. $910 \bullet 1113$	$F, \overline{4} \vee \overline{5} \vee 11 \vee 12$	$\overline{7} \vee \overline{13}$	by T-Conflict ($7,13 \neq \mathrm{UF} \perp$)

Example - Non-convex Theories

$$
\begin{aligned}
& \underbrace{a=e_{4}}_{10} \underbrace{x=e_{1}}_{11} \underbrace{x=e_{2}}_{12} \underbrace{a=b}_{13}
\end{aligned}
$$

M	F	C	rule
	F	no	
$0 \cdots 9$	F	no	by Propagate ${ }^{+}$
$0 \cdots 910$	F	no	by T-Propagate ($0,3 \neq \mathrm{UF}$ (10)
$0 \ldots 910$	$F, \overline{4} \vee \frac{\overline{5}}{5} \vee 11 \vee 12$	no	by I-Learn ($\mid=$ LIA $\left.\overline{4} \vee \frac{5}{5} \vee 11 \vee 12\right)$
$0 \cdots 910 \bullet 11$	$F, \underline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Decide
$0 \cdots 910 \bullet 1113$	$F, \underline{\overline{4}} \vee \frac{\overline{5}}{5} \vee 11 \vee 12$	- no	by T-Propagate (0, 1, $11 \leqslant$ UF 13)
$0 \cdots 910 \cdot 11 \frac{13}{13}$	$F, \overline{4} \vee \frac{5}{5} \vee 11 \vee 12$	$\overline{7} \vee \overline{13}$	by T-Conflict $(7,13 \models \mathrm{UF} \perp$)
$0 \cdots 910 \overline{13}$	$F, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Backjump

Example - Non-convex Theories

$$
\begin{aligned}
& F:=\begin{array}{l}
\overbrace{f\left(e_{1}\right)}^{0}=\stackrel{a}{~} \wedge \overbrace{f(x)=b}^{1} \wedge \overbrace{f\left(e_{2}\right)=e_{3}}^{2} \wedge \overbrace{f\left(e_{1}\right)=e_{4}}^{3} \wedge \\
\begin{array}{c}
1 \leq x
\end{array} \underbrace{x \leq 2}_{5} \wedge \underbrace{e_{1}=1}_{6} \wedge \underbrace{a=b+2}_{7} \wedge \underbrace{e_{2}=2}_{8}
\end{array} \wedge \underbrace{e_{3}=e_{4}+3}_{9} \\
& \underbrace{a=e_{4}}_{10} \underbrace{x=e_{1}}_{11} \underbrace{x=e_{2}}_{12} \underbrace{a=b}_{13}
\end{aligned}
$$

M	F	C	rule
	F	no	
$0 \cdots 9$	F	no	by Propagate ${ }^{+}$
$0 \cdots 910$	F	no	
$0 \ldots 910$	$F, \overline{4} \vee \frac{5}{5} \vee 11 \vee 12$	no	by I-Learn ($=$ LIA $\overline{4} \vee \overline{5}$ (11 ${ }^{\text {a }}$ 12)
$0 \cdots 910 \bullet 11$	$F, \underline{4} \vee \underline{5} \vee 11 \vee 12$	no	by Decide
$0 \cdots 910 \cdot 1113$	$F, \overline{4} \vee \frac{5}{5} \vee 11 \vee 12$	no	by T-Propagate ($0,1,11 \mid=\mathrm{UF}$ 13)
$0 \cdots 910 \cdot 11 \frac{13}{13}$	$F, \overline{4} \vee \frac{5}{5} \vee 11 \vee 12$	$\overline{7} \vee \overline{13}$	by T-Conflict ($7,13 \models \mathrm{UF} \perp$)
$0 \cdots 910 \frac{13}{13}$	$F, \overline{4} \vee \frac{5}{5} \vee 11 \vee 12$	no	by Backjump
$0 \cdots 910 \overline{13} \overline{11}$	$F, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by T-Propagate ($0,1, \overline{13} \vDash=_{\mathrm{UF}} \overline{11}$)

Example - Non-convex Theories

Example - Non-convex Theories

Example - Non-convex Theories

Theory Solvers

Theory Solvers

Given a theory T, a Theory Solver for T takes as input a set Φ of literals and determines whether Φ is T-satisfiable.
Φ is T-satisfiable iff there is some model M of T such that each formula in Φ holds in M.

Theories of Interest: UF

Equality ($=$) with Uninterpreted Functions [NO80, BD94, NO07]

Typically used to abstract unsupported constructs, e.g.:

- non-linear multiplication in arithmetic
- ALUs in circuits

Example: The formula

$$
a *(|b|+c)=d \wedge b *(|a|+c) \neq d \wedge a=b
$$

is unsatisfiable, but no arithmetic reasoning is needed
if we abstract it to

$$
\operatorname{mul}(a, \operatorname{add}(a b s(b), c))=d \wedge \operatorname{mul}(b, \operatorname{add}(a b s(a), c)) \neq d \wedge a=b
$$

Theories of Interest: Arithmetic

Very useful, for obvious reasons

Restricted fragments (over the reals or the integers) support more efficient methods:

- Bounds: $x \bowtie k$ with $\bowtie \in\{<,>, \leq, \geq,=\}\left[\mathrm{BBC}^{+} 05 \mathrm{a}\right]$
- Difference logic: $x-y \bowtie k$, with $\bowtie \in\{<,>, \leq, \geq,=\}[$ NO05, wIGG05, CM06]
- UTVPI: $\pm x \pm y \bowtie k$, with $\bowtie \in\{<,>, \leq, \geq,=\}$ [LM05]
- Linear arithmetic, e.g: $2 x-3 y+4 z \leq 5$ [DdM06]
- Non-linear arithmetic, e.g:

$$
2 x y+4 x z^{2}-5 y \leq 10\left[\mathrm{BLNM}^{+} 09, \mathrm{ZM} 10, \mathrm{JdM} 12\right]
$$

Theories of Interest: Arrays

Used in software verification and hardware verification (for memories) [SBDL01, $\mathrm{BNO}^{+} 08 \mathrm{a}$, dMB09]

Two interpreted function symbols read and write
Axiomatized by:

- $\forall a \forall i \forall v \operatorname{read}(\operatorname{write}(a, i, v), i)=v$
- $\forall a \forall i \forall j \forall v i \neq j \rightarrow \operatorname{read}(\operatorname{write}(a, i, v), j)=\operatorname{read}(a, j)$

Sometimes also with extensionality:

- $\forall a \forall b(\forall i \operatorname{read}(a, i)=\operatorname{read}(b, i) \rightarrow a=b)$

Is the following set of literals satisfiable in this theory?

$$
\operatorname{write}(a, i, x) \neq b, \operatorname{read}(b, i)=y, \operatorname{read}(\operatorname{write}(b, i, x), j)=y, a=b, i=j
$$

Theories of Interest: Bit vectors

Useful both in hardware and software verification $\left[\mathrm{BCF}^{+} 07, \mathrm{BB} 09, \mathrm{HBJ}^{+}\right.$14]

Universe consists of (fixed-sized) vectors of bits

Different types of operations:

- String-like: concat, extract, ...
- Logical: bit-wise not, or, and, ...
- Arithmetic: add, subtract, multiply, ...
- Comparison: $<,>, \ldots$

Is this formula satisfiable over bit vectors of size 3 ?

$$
a[1: 0] \neq b[1: 0] \wedge(a \mid b)=c \wedge c[0]=0 \wedge a[1]+b[1]=0
$$

Implementing a Theory Solver: Difference Logic

We consider a simple example: difference logic.
In difference logic, we are interested in the satisfiability of a conjunction of arithmetic atoms.

Each atom is of the form $x-y \bowtie c$, where x and y are variables, c is a numeric constant, and $\bowtie \in\{=,<, \leq,>, \geq\}$.

The variables can range over either the integers (QF_IDL) or the reals (QF_RDL).

Difference Logic

The first step is to rewrite everything in terms of \leq :

Difference Logic

The first step is to rewrite everything in terms of \leq :

- $x-y=c \quad \Longrightarrow \quad x-y \leq c \wedge x-y \geq c$

Difference Logic

The first step is to rewrite everything in terms of \leq :

$$
\begin{array}{ll}
\text { - } x-y=c & \Longrightarrow x-y \leq c \wedge x-y \geq c \\
\text { - } x-y \geq c & \Longrightarrow y-x \leq-c
\end{array}
$$

Difference Logic

The first step is to rewrite everything in terms of \leq :

- $x-y=c \quad \Longrightarrow \quad x-y \leq c \wedge x-y \geq c$
- $x-y \geq c \quad \Longrightarrow \quad y-x \leq-c$
- $x-y>c \Longrightarrow y-x<-c$

Difference Logic

The first step is to rewrite everything in terms of \leq :

- $x-y=c \quad \Longrightarrow \quad x-y \leq c \wedge x-y \geq c$
- $x-y \geq c \quad \Longrightarrow \quad y-x \leq-c$
- $x-y>c \quad \Longrightarrow \quad y-x<-c$
- $x-y<c \quad \Longrightarrow \quad x-y \leq c-1$ (integers)

Difference Logic

The first step is to rewrite everything in terms of \leq :

- $x-y=c \quad \Longrightarrow \quad x-y \leq c \wedge x-y \geq c$
- $x-y \geq c \quad \Longrightarrow \quad y-x \leq-c$
- $x-y>c \Longrightarrow y-x<-c$
- $x-y<c \quad \Longrightarrow \quad x-y \leq c-1$ (integers)
- $x-y<c \quad \Longrightarrow \quad x-y \leq c-\delta$ (reals)

Difference Logic

Now we have a conjunction of literals, all of the form $x-y \leq c$.

From these literals, we form a weighted directed graph with a vertex for each variable.

For each literal $x-y \leq c$, there is an edge $x \xrightarrow{c} y$.

The set of literals is satisfiable iff there is no cycle for which the sum of the weights on the edges is negative.

There are a number of efficient algorithms for detecting negative cycles in graphs.

Difference Logic Example

$$
x-y=5 \wedge z-y \geq 2 \wedge z-x>2 \wedge w-x=2 \wedge z-w<0
$$

Difference Logic Example

$$
x-y=5 \wedge z-y \geq 2 \wedge z-x>2 \wedge w-x=2 \wedge z-w<0
$$

$$
\begin{aligned}
& x-y=5 \\
& z-y \geq 2 \\
& z-x>2 \\
& w-x=2 \\
& z-w<0
\end{aligned}
$$

Difference Logic Example

$$
x-y=5 \wedge z-y \geq 2 \wedge z-x>2 \wedge w-x=2 \wedge z-w<0
$$

$$
\begin{aligned}
& x-y=5 \\
& z-y \geq 2 \\
& z-x>2 \\
& w-x=2 \\
& z-w<0
\end{aligned}
$$

Difference Logic Example

$$
x-y=5 \wedge z-y \geq 2 \wedge z-x>2 \wedge w-x=2 \wedge z-w<0
$$

$$
\begin{array}{ll}
x-y=5 \\
z-y \geq 2 \\
z-x>2 \\
w-x=2 \\
z-w<0
\end{array} \quad \Rightarrow \quad \begin{aligned}
& x-y \leq 5 \wedge y-x \leq-5 \\
& \\
& z-z \leq-2 \\
& w-x \leq 2 \wedge x-w \leq-2 \\
& z-w \leq-1
\end{aligned}
$$

Difference Logic Example

Suggested Readings

1. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories: From an abstract Davis-Putnam-Logemann- Loveland procedure to DPLL(T). Journal of the ACM, 53(6):937-977, 2006.
2. R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean Modeling and Computation 3:141-224, 2007.
3. S. Krstić and A. Goel. Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL. In Proceeding of the Symposium on Frontiers of Combining Systems (FroCoS'07). Volume 4720 of LNCS. Springer, 2007.
4. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo Theories. In Handbook of Satisfiability. IOS Press, 2009.

References

$\left[\mathrm{ABC}^{+}{ }^{02}\right]$ Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Korniłowicz, and Roberto Sebastiani.
A SAT-based approach for solving formulas over boolean and linear mathematical propositions. In Andrei Voronkov, editor, Proceedings of the 18th International Conference on Automated Deduction, volume 2392 of Lecture Notes in Artificial Intelligence, pages 195-210. Springer, 2002
[ACG00] Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. SAT-based procedures for temporal reasoning.
In S. Biundo and M. Fox, editors, Proceedings of the 5th European Conference on Planning (Durham, UK), volume 1809 of Lecture Notes in Computer Science, pages 97-108. Springer, 2000
[AMP06] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded model checking of software using SMT solvers instead of SAT solvers.
In Proceedings of the 13th International SPIN Workshop on Model Checking of Software (SPIN'06), volume 3925 of Lecture Notes in Computer Science, pages 146-162. Springer, 2006
[Bar02] Clark W. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations of First-Order Theories.
PhD dissertation, Department of Computer Science, Stanford University, Stanford, CA, Sep 2002

References

[BB09] R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays. In S. Kowalewski and A. Philippou, editors, 15th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS'05, volume 5505 of Lecture Notes in Computer Science, pages 174-177. Springer, 2009
$\left[\mathrm{BBC}^{+} 05 \mathrm{a}\right]$ M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R. Sebastiani. An incremental and layered procedure for the satisfiability of linear arithmetic logic.
In Tools and Algorithms for the Construction and Analysis of Systems, 11th Int. Conf., (TACAS), volume 3440 of Lecture Notes in Computer Science, pages 317-333, 2005
$\left[\mathrm{BBC}^{+}\right.$05b] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Silvio Ranise, Roberto Sebastiani, and Peter van Rossu. Efficient satisfiability modulo theories via delayed theory combination.
In K.Etessami and S. Rajamani, editors, Proceedings of the 17th International Conference on Computer Aided Verification, volume 3576 of Lecture Notes in Computer Science, pages 335-349. Springer, 2005

References

$\left[\mathrm{BCF}^{+}\right.$07] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, Ziyad Hanna, Alexander Nadel, Amit Palti, and Roberto Sebastiani. A lazy and layered SMT(BV) solver for hard industrial verification problems.
In Werner Damm and Holger Hermanns, editors, Proceedings of the $19^{\text {th }}$ International Conference on Computer Aided Verification, volume 4590 of Lecture Notes in Computer Science, pages 547-560. Springer-Verlag, July 2007
[BCLZ04] Thomas Ball, Byron Cook, Shuvendu K. Lahiri, and Lintao Zhang. Zapato: Automatic theorem proving for predicate abstraction refinement.
In R. Alur and D. Peled, editors, Proceedings of the 16th International Conference on Computer Aided Verification, volume 3114 of Lecture Notes in Computer Science, pages 457-461. Springer, 2004
[BD94] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor control. In Procs. 6th Int. Conf. Computer Aided Verification (CAV), LNCS 818, pages 68-80, 1994
[BDS02] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of first-order formulas by incremental translation to SAT.
In J. C. Godskesen, editor, Proceedings of the International Conference on Computer-Aided Verification, Lecture Notes in Computer Science, 2002

References

[BGV01] R. E. Bryant, S. M. German, and M. N. Velev. Processor Verification Using Efficient Reductions of the Logic of Uninterpreted Functions to Propositional Logic.
ACM Transactions on Computational Logic, TOCL, 2(1):93-134, 2001
$\left[B_{L N M}{ }^{+} 09\right] \quad$ C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodríguez-Carbonell, and A. Rubio. Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic.
In R. A. Schmidt, editor, 22nd International Conference on Automated Deduction, CADE-22, volume 5663 of Lecture Notes in Computer Science, pages 294-305. Springer, 2009
[BLS02] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Deciding CLU logic formulas via boolean and pseudo-boolean encodings.
In Proc. Intl. Workshop on Constraints in Formal Verification, 2002
$\left[\mathrm{BNO}^{+} 08 \mathrm{a}\right]$ M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. A Write-Based Solver for SAT Modulo the Theory of Arrays. In Formal Methods in Computer-Aided Design, FMCAD, pages 1-8, 2008
$\left[\mathrm{BNO}^{+}\right.$08b] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert Rubio. The Barcelogic SMT solver.
In Computer-aided Verification (CAV), volume 5123 of Lecture Notes in Computer Science, pages 294-298. Springer, 2008

References

[BNOT06] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting on demand in sat modulo theories.
In M. Hermann and A. Voronkov, editors, Proceedings of the 13th International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR'06), Phnom Penh, Cambodia, volume 4246 of Lecture Notes in Computer Science, pages 512-526. Springer, 2006
[BV02] R. E. Bryant and M. N. Velev. Boolean Satisfiability with Transitivity Constraints. ACM Transactions on Computational Logic, TOCL, 3(4):604-627, 2002
[CKSY04] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Predicate abstraction of ANSI-C programs using SAT. Formal Methods in System Design (FMSD), 25:105-127, September-November 2004
[CM06] S. Cotton and O. Maler. Fast and Flexible Difference Constraint Propagation for DPLL(T). In A. Biere and C. P. Gomes, editors, 9th International Conference on Theory and Applications of Satisfiability Testing, SAT'06, volume 4121 of Lecture Notes in Computer Science, pages 170-183. Springer, 2006

References

[DdM06] Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In T. Ball and R. B. Jones, editors, 18th International Conference on Computer Aided Verification, CAV'06, volume 4144 of Lecture Notes in Computer Science, pages 81-94. Springer, 2006
[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving. Communications of the ACM, 5(7):394-397, July 1962
[dMB09] L. de Moura and N. Bjørner. Generalized, efficient array decision procedures. In 9th International Conference on Formal Methods in Computer-Aided Design, FMCAD 2009, pages 45-52. IEEE, 2009
[dMR02] L. de Moura and H. Rueß. Lemmas on Demand for Satisfiability Solvers. In 5th International Conference on Theory and Applications of Satisfiability Testing, SAT'02, pages 244-251, 2002
[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the ACM, 7(3):201-215, July 1960
$\left[\mathrm{FLL}^{+}{ }^{02}\right]$ C. Flanagan, K. R. M Leino, M. Lillibridge, G. Nelson, and J. B. Saxe. Extended static checking for Java.
In Proc. ACM Conference on Programming Language Design and Implementation, pages 234-245, June 2002

References

$\left[\mathrm{GHN}^{+} 04\right]$ Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
DPLL(T): Fast decision procedures.
In R. Alur and D. Peled, editors, Proceedings of the 16th International Conference on Computer Aided Verification, CAV'04 (Boston, Massachusetts), volume 3114 of Lecture Notes in Computer Science, pages 175-188. Springer, 2004
$\left[\mathrm{HBJ}^{+}\right.$14] Liana Hadarean, Clark Barrett, Dejan Jovanović, Cesare Tinelli, and Kshitij Bansal. A tale of two solvers: Eager and lazy approaches to bit-vectors.
In Armin Biere and Roderick Bloem, editors, Proceedings of the $26^{\text {th }}$ International Conference on Computer Aided Verification (CAV '14), volume 8559 of Lecture Notes in Computer Science, pages 680-695. Springer, July 2014
[HT08] George Hagen and Cesare Tinelli. Scaling up the formal verification of Lustre programs with SMT-based techniques.
In A. Cimatti and R. Jones, editors, Proceedings of the 8th International Conference on Formal Methods in Computer-Aided Design (FMCAV'08), Portland, Oregon, pages 109-117. IEEE, 2008
[JdM12] Dejan Jovanović and Leonardo de Moura. Solving Non-linear Arithmetic.
In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, 6th International Joint Conference on Automated Reasoning (IJCAR '12), volume 7364 of Lecture Notes in Computer Science, pages 339-354. Springer, 2012
[JB10] Dejan Jovanović and Clark Barrett. Polite theories revisited.
In Chris Fermüller and Andrei Voronkov, editors, Proceedings of the 17th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume 6397 of Lecture Notes in Computer Science, pages 402-416. Springer-Verlag, 2010
[KG07] Sava Krstić and Amit Goel. Architecting solvers for SAT modulo theories: Nelson-Oppen with DPLL.
In B. Konev and F. Wolter, editors, Proceeding of the Symposium on Frontiers of Combining Systems (Liverpool, England), volume 4720 of Lecture Notes in Computer Science, pages 1-27. Springer, 2007

References

[LM05] Shuvendu K. Lahiri and Madanlal Musuvathi. An Efficient Decision Procedure for UTVPI Constraints.
In B. Gramlich, editor, 5th International Workshop on Frontiers of Combining Systems, FroCos'05, volume 3717 of Lecture Notes in Computer Science, pages 168-183. Springer, 2005
[LNO06] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for Fast Predicate Abstraction. In T. Ball and R. B. Jones, editors, 18th International Conference on Computer Aided Verification, CAV'06, volume 4144 of Lecture Notes in Computer Science, pages 413-426. Springer, 2006
[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM Trans. on Programming Languages and Systems, 1(2):245-257, October 1979
[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. Journal of the ACM, 27(2):356-364, 1980
[NO05] Robert Nieuwenhuis and Albert Oliveras. DPLL(T) with Exhaustive Theory Propagation and its Application to Difference Logic.
In Kousha Etessami and Sriram K. Rajamani, editors, Proceedings of the 17th International Conference on Computer Aided Verification, CAV'05 (Edimburgh, Scotland), volume 3576 of Lecture Notes in Computer Science, pages 321-334. Springer, July 2005

References

[NO07] R. Nieuwenhuis and A. Oliveras. Fast Congruence Closure and Extensions. Information and Computation, IC, 2005(4):557-580, 2007
[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM, 53(6):937-977, November 2006
[Opp80] Derek C. Oppen. Complexity, convexity and combinations of theories. Theoretical Computer Science, 12:291-302, 1980
[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding Equality Formulas by Small Domains Instantiations.
In N. Halbwachs and D. Peled, editors, 11th International Conference on Computer Aided Verification, CAV'99, volume 1633 of Lecture Notes in Computer Science, pages 455-469. Springer, 1999
[Rin96] Christophe Ringeissen. Cooperation of decision procedures for the satisfiability problem. In F. Baader and K.U. Schulz, editors, Frontiers of Combining Systems: Proceedings of the 1st International Workshop, Munich (Germany), Applied Logic, pages 121-140. Kluwer Academic Publishers, March 1996

References

[RRZ05] Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Combining data structures with nonstably infinite theories using many-sorted logic.
In B. Gramlich, editor, Proceedings of the Workshop on Frontiers of Combining Systems, volume 3717 of Lecture Notes in Computer Science, pages 48-64. Springer, 2005
[SBDL01] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A Decision Procedure for an Extensional Theory of Arrays.
In 16th Annual IEEE Symposium on Logic in Computer Science, LICS'01, pages 29-37. IEEE Computer Society, 2001
[Sha02] Natarajan Shankar. Little engines of proof. In Lars-Henrik Eriksson and Peter A. Lindsay, editors, FME 2002: Formal Methods - Getting IT Right, Proceedings of the International Symposium of Formal Methods Europe (Copenhagen, Denmark), volume 2391 of Lecture Notes in Computer Science, pages 1-20. Springer, July 2002
[SLB03] Sanjit A. Seshia, Shuvendu K. Lahiri, and Randal E. Bryant. A hybrid SAT-based decision procedure for separation logic with uninterpreted functions.
In Proc. 40th Design Automation Conference, pages 425-430. ACM Press, 2003
[SSB02] O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding Separation Formulas with SAT. In E. Brinksma and K. G. Larsen, editors, 14th International Conference on Computer Aided Verification, CAV'02, volume 2404 of Lecture Notes in Computer Science, pages 209-222. Springer, 2002

References

[TdH08] N. Tillmann and J. de Halleux. Pex-White Box Test Generation for .NET. In B. Beckert and R. Hähnle, editors, 2nd International Conference on Tests and Proofs, TAP'08, volume 4966 of Lecture Notes in Computer Science, pages 134-153. Springer, 2008
[TH96] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson-Oppen combination procedure.
In F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems: Proceedings of the 1st International Workshop (Munich, Germany), Applied Logic, pages 103-120. Kluwer Academic Publishers, March 1996
[Tin02] C. Tinelli. A DPLL-based calculus for ground satisfiability modulo theories. In G. Ianni and S. Flesca, editors, Proceedings of the 8th European Conference on Logics in Artificial Intelligence (Cosenza, Italy), volume 2424 of Lecture Notes in Artificial Intelligence. Springer, 2002
[TZ05] Cesare Tinelli and Calogero Zarba. Combining nonstably infinite theories. Journal of Automated Reasoning, 34(3):209-238, April 2005

References

[WIGG05] C. Wang, F. Ivancic, M. K. Ganai, and A. Gupta. Deciding Separation Logic Formulae by SAT and Incremental Negative Cycle Elimination.
In G. Sutcliffe and A. Voronkov, editors, 12 h International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR'05, volume 3835 of Lecture Notes in Computer Science, pages 322-336. Springer, 2005
[ZM10] Harald Zankl and Aart Middeldorp. Satisfiability of Non-linear (Ir)rational Arithmetic.
In Edmund M. Clarke and Andrei Voronkov, editors, 16th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR'10, volume 6355 of Lecture Notes in Computer Science, pages 481-500. Springer, 2010

