Model Checking

An Overview

Goals

- Vocabulary
- Modeling
- Specification
- High-level understanding of algorithms

Outline

- What is Model Checking?
- Modeling: Transition Systems
- Specification: Linear Temporal Logic
- Historical Verification Approaches
- Explicit-state
- BDDs
- SAT/SMT-based Verification Approaches
- Bounded Model Checking
- K-Induction
- Inductive Invariants

Motivation

- Safety-critical systems
- Airplanes
- Space shuttles
- Railways
- Expensive mistakes
- Chip design
- Critical software
- Want to guarantee safe behavior over unbounded time

What is Model Checking?

- An approach for verifying the temporal behavior of a system
- Primarily fully-automated ("push-button") techniques
- Model

- Considers infinite sequences
- PSPACE-complete for FSMs

Modeling: Transition Systems

- Model checking typically operates over Transition Systems
- A (symbolic) state machine
- A Transition System is $\langle S, I, T\rangle$
- S : a set of states
- I: a set of initial states (sometimes use Init instead of I for clarity)
- T : a transition relation: $T \subseteq S \times S$
- $T\left(s_{0}, s_{1}\right)$ holds when there is a transition from s_{0} to s_{1}

Symbolic Transition Systems in Practice

- States are made up of state variables $v \in V$
- A state is an assignment to all variables
- A Transition System is $\langle V, I, T\rangle$
- V : a set of state variables, V^{\prime} denotes next state variables
- I: a set of initial states
- T: a transition relation
- $T\left(v_{0}, \ldots, v_{n}, v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right)$ holds when there is a transition
- Note: will often still use s to denote symbolic states (just know they're made up of variables)
- Symbolic state machine is built by translating another representation
- E.g. a program, a mathematical model, a hardware description, etc...

Symbolic Transition System Example

- 2 variables: $V=\left\{v_{0}, v_{1}\right\}$
- $S_{0}:=\neg v_{0} \wedge \neg v_{1}, \quad S_{1}:=\neg v_{0} \wedge v_{1}$
- $S_{2}:=v_{0} \wedge \neg v_{1}, \quad S_{3}:=v_{0} \wedge v_{1}$
- Transition relation

$$
\begin{aligned}
& \left(\neg v_{0} \wedge \neg v_{1}\right) \Rightarrow\left(\left(\neg v_{0}^{\prime} \wedge v_{1}^{\prime}\right) \vee\left(v_{0}^{\prime} \wedge \neg v_{1}^{\prime}\right)\right) \wedge \\
& \left(\neg v_{0} \wedge v_{1}\right) \Rightarrow\left(v_{0}^{\prime} \wedge v_{1}^{\prime}\right) \wedge \\
& \left(v_{0} \wedge \neg v_{1}\right) \Rightarrow\left(v_{0}^{\prime} \wedge v_{1}^{\prime}\right) \wedge \\
& \left(v_{0} \wedge v_{1}\right) \Rightarrow\left(v_{0}^{\prime} \wedge v_{1}^{\prime}\right)
\end{aligned}
$$

Modeling: Transition System Executions

- An execution is a sequence of states that respects I in the first state and T between every adjacent pair
- $\pi:=s_{0} s_{1} \ldots s_{n}$ is a finite sequence if $I\left(s_{0}\right) \wedge \bigwedge_{i=1}^{n} T\left(s_{i-1}, s_{i}\right)$

Meta Note: State Machine vs Execution Diagrams

State Machine uses capitals

Symbolic execution uses lowercase

Concrete Execution:

$$
s 0=S 0, s 1=S 2, s 2=S 3, s 3=S 3
$$

Specification: Historical

- Original approaches considered equivalence only
- Model M_{1} implements model M_{2} exactly
- Duality between model and specification
- The specification is itself a model
- But the big innovation is that it can be a partially specified model
- And can have loose definitions of timing, e.g. something eventually happens
- Specification is typically higher-level, abstract behavior
- Language considerations
- Specification language should be sufficiently different from the implementation language
- i.e. can always prove that $M_{1} \equiv M_{1}$, but that's useless

Specification: Linear Temporal Logic

- Notation: $M \vDash f$
- Transition System model, M, entails LTL property, f, for ALL possible paths
- i.e. LTL is implicitly universally quantified
- Other logics include
- CTL: computational tree logic (branching time)
- CTL*: combination of LTL and CTL
- MTL: metric temporal logic (for regions of time)

Specification: Linear Temporal Logic

- State formula $P \subseteq S$:
- Holds iff $s_{0} \in P$

- X operator: $X(P)$
- Next time

- Holds iff the next state meets property P
- G operator: G(P)
- Globally holds

- True iff every reachable state meets property P

Specification: Linear Temporal Logic

- F operator: $\mathrm{F}(\mathrm{P})$
- Finally

- True iff P eventually holds
- U operator: P1 U P2

- Until
- True iff P1 holds up until (but not necessarily including) a state where P2 holds
- P2 must hold at some point

Specification: Linear Temporal Logic

- LTL operators can be composed
- $G(R e q \Rightarrow F(A c k))$
- Every request eventually acknowledged
- G(F(DeviceEnabled))
- The device is enabled infinitely often (from every state, it's eventually enabled again)
- $F(G(\neg$ Initializing $))$
- Eventually it's not initializing
- E.g. there is some initialization procedure that eventually ends and never restarts

Specification Safety vs. Liveness

" Safety: "something bad does not happen"

- State invariant, e.g. G ($\neg b a d)$
" Liveness: "something good eventually happens"
- Eventuality, e.g. GF (good)
- Fairness conditions
- Fair traces satisfy each of the fairness conditions infinitely often
- E.g. only fair if it doesn't delay acknowledging a request forever
- Every property can be written as a conjunction of a safety and liveness property

Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters, 21(4):181-185, October 1985.

Specification: Liveness to Safety

- Can reduce liveness to safety checking by modifying the system
- For SAT-based:

Armin Biere, Cyrille Artho, Viktor Schuppan. Liveness Checking as Safety Checking, Electronic Notes in Theoretical Computer Science. 2002

- Several approaches for first-order logic
- From now on, we consider only safety properties

Historical Verification Approaches: Explicit State

- Tableaux-style state exploration
- Form of depth-first search
- Many clever tricks for reducing search space
- Big contribution is handling temporal logics (including branching time)

Historical Verification Approaches: BDDs

- Binary Decision Diagrams (BDDs)
- Manipulate sets of states symbolically
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic Model Checking: 10^{20} States and beyond
- Great BDD resource
- http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/somenzi99bdd.pdf

Historical Verification Approaches: BDDs

- Represent Boolean formula as a decision diagram
- Example: $\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right)$
- Can be much more succinct than other representations

BDDs: Cofactoring

Redirect incoming edges to assignment (F)

- $\left.f\right|_{\neg x_{2}}$ for $\operatorname{BDD} f$ is fixing x_{2} to be negative

After reduction

Credit for Example: Introduction to Formal Hardware Verification - Thomas Kropf

BDD Operators

- Negation
- Swap leaves ($\mathrm{F} \rightarrow \mathrm{T}$)
- AND
- All Boolean operators implemented recursively
- These two operators are sufficient

Fig. 2-7. AND-Operation between $x_{1} \vee x_{2}$ and $x_{2} \neg x_{3}$

Image Credit: Introduction to Formal Hardware Verification - Thomas Kropf

BDD Image Computation

- Current reachable states are BDD R
- Over variable set V
- Compute next states with:
- N := $\exists V T\left(V, V^{\prime}\right) \wedge R(V)$
- Existential is cofactoring: $\exists x f(x):=\left(\left.x \wedge f\right|_{x}\right) \vee\left(\left.\neg x \wedge f\right|_{\neg x}\right)$
- aka Shannon Expansion
- Grow reachable states
- $R=R \vee N\left[V^{\prime} / V\right]$
- Map next-state variables to current state, then add to reachable states

BDD-based model checking

- Start with $R=$ Init
- Keep computing image and growing reachable states
- Stop when there's a fixpoint (reachable states not growing)
- Can handle $\sim 10^{20}$ states
- More with abstraction techniques and compositional model checking

BDD: Variable Ordering

- Good variable orderings can be exponentially more compact
- Finding a good ordering is NP-complete
- There are formulas that have no non-exponential ordering: multipliers

SAT-based model checking

- Edmund Clarke
- One of the founders of model checking
- SAT solving taking off
- Clarke hired several post-doctoral students to try to use SAT as an oracle to solve model checking problems
- Struggled for a while to find a general technique
- What if you give up completeness? \rightarrow Bounded Model Checking

Armin Biere, Alessandro Cimatti, Edmund Clarke, Yunshan Zhu. Symbolic Model
Checking without BDDs. TACAS 1999

Bounded Model Checking (BMC)

- Sacrifice completeness for quick bug-finding
- Unroll the transition system
- Each variable $v \in V$ gets a new symbol for each time-step, e.g. v_{k} is v at time k
- Space-Time duality: unrolls temporal behavior into space
- For increasing values of k, check:
- $I\left(s_{0}\right) \wedge \wedge_{i=1}^{k} T\left(s_{i-1}, s_{i}\right) \wedge \neg P\left(s_{k}\right)$
- If it is ever SAT, return FALSE
- Can construct a counter-example trace from the solver model

BMC Graphically

s_{0} must be an initial state
Check if it can violate the property at time k

Bounded Model Checking: Completeness

- Completeness condition: reaching the diameter
- Diameter: d
- The depth needed to unroll to such that every possible state is reachable in d steps or less
- Recurrence diameter: d_{r}
- The depth such that every execution of the system of length $\geq d_{r}$ must revisit states
- Can be exponentially larger than the diameter
- $d_{r} \geq d$
- Very difficult to compute the diameter
- Requires a quantifier: find d such that any state reachable at $d+1$ is also reachable in $\leq d$ steps

K-Induction

- Extends bounded model checking to be able to prove properties
- Based on the concept of (strong) mathematical induction
- For increasing values of k, check:
- Base Case: $I\left(s_{0}\right) \wedge \wedge_{i=1}^{k} T\left(s_{i-1}, s_{i}\right) \wedge \neg P\left(s_{k}\right)$
- Inductive Case: $\left(\wedge_{i=1}^{k} T\left(s_{i-1}, s_{i}\right) \wedge P\left(s_{i-1}\right)\right) \wedge \neg P\left(s_{k}\right)$
- If base case is SAT, return a counter-example
- If inductive case is UNSAT, return TRUE
- Otherwise, continue

Mary Sheeran, Satnam Singh, and Gunnar Stälmarck. Checking safety properties using induction and a SAT-solver. FMCAD 2000

K-Induction Graphically

Base Case

s_{0} must be an initial state

Inductive Case

Arbitrary starting state s_{0} such that $P\left(s_{0}\right)$ holds

K-Induction: Simple Path

- This approach can be complete over a finite domain
- requires the simple path constraint
- each state is distinct from other states in trace
- If simple path is UNSAT, then we can return true
$\rightarrow--------\gg$: not equal

K-Induction: Simple Path

- This approach can be complete over a finite domain
- requires the simple path constraint
- each state is distinct from other states in trace
- If simple path is UNSAT, then we can return true

Without simple path, inductive step could get:

K-Induction Observation

- Crucial observation
- Does not depend on direct computation of reachable state space
" Beginning of "property directed" techniques
- We do not need to know the exact reachable states, as long as we can guarantee they meet the property
- "Property directed" is associated with a family of techniques that build inductive invariants automatically

Inductive Invariants

- The goal of most modern model checking algorithms
- Over finite-domain, just need to show that algorithm makes progress, and it will eventually find an inductive invariant
- E.g. in the worst case, the reachable states are themselves an inductive invariant
- Hopefully there's an easier to find inductive invariant that is sufficient
- Inductive Invariant: II
- $\operatorname{Init}(s) \Rightarrow I I(s)$
- $\mathrm{T}\left(s, s^{\prime}\right) \wedge I I(s) \Rightarrow I I\left(s^{\prime}\right)$
- $I I(s) \Rightarrow P(s)$

State Space
Property
Simple Inductive
Invariant

Advanced: Relative Induction

while * do:

- Inductive Invariant:

$$
a=0 ; b=0 ; c=0
$$

assert a ≥ 0
$a^{\prime}=a+b$
$b^{\prime}=b+c$
$c^{\prime}=c+1+a$

- $a \geq 0 \wedge b \geq 0 \wedge c \geq 0$
- Incremental induction
- Guess: $a \geq 0$
- Induction: $c \geq 0$, relative to $a \geq 0$
- Induction: $b \geq 0$, relative to $a \geq 0 \wedge c \geq 0$
- Prove: $a \geq 0$
- Break circularity with induction

Advanced: Relative Induction

- Break circularity with induction

$$
a=0 ; b=0 ; c=0
$$

while * do:
assert a ≥ 0
$a^{\prime}=a+b$
$b^{\prime}=b+c$
$c^{\prime}=c+1+a$

- Guess $a \geq 0$
- Init $\vDash a \geq 0 \wedge c \geq 0$,
- Relative Induction: $a \geq 0 \wedge c \geq 0 \vDash c^{\prime} \geq 0$
- Init $\vDash a \geq 0 \wedge c \geq 0 \wedge b \geq 0$
- Induction: $a \geq 0 \wedge c \geq 0 \wedge b \geq 0 \vDash a^{\prime} \geq 0 \wedge c^{\prime} \geq 0 \wedge b^{\prime} \geq 0$
- The last inductive proof is a complete proof
- But obtaining the inductive invariant by first guessing $a \geq 0$, then finding $c \geq 0$ could be easier

Advanced Algorithms

- Interpolant-based model checking
- Constructs an overapproximation of the reachable states
- Terminates when it finds an inductive invariant or a counterexample
- IC3 / PDR
- Computes over (under) approximations of forward (backward) reachable states
- Refines approximations by guessing relative inductive invariants
- Terminates when it finds an inductive invariant or a counterexample

Thank you!

