
Model Checking
An Overview

Goals

▪ Vocabulary

▪ Modeling

▪ Specification

▪ High-level understanding of algorithms

Outline

▪ What is Model Checking?

▪ Modeling: Transition Systems

▪ Specification: Linear Temporal Logic

▪ Historical Verification Approaches

▪ Explicit-state

▪ BDDs

▪ SAT/SMT-based Verification Approaches

▪ Bounded Model Checking

▪ K-Induction

▪ Inductive Invariants

Motivation

This Photo by Unknown Author is licensed under CC BY

This Photo by Unknown Author is licensed under CC BY-SA

▪ Safety-critical systems

▪ Airplanes

▪ Space shuttles

▪ Railways

▪ Expensive mistakes

▪ Chip design

▪ Critical software

▪ Want to guarantee safe behavior over
unbounded time

http://www.creativity103.com/collections/Technology/slides/circuit_board.html
https://creativecommons.org/licenses/by/3.0/
http://en.wikipedia.org/wiki/File:Air_France_A380_F-HPJA.jpg
https://creativecommons.org/licenses/by-sa/3.0/

What is Model Checking?

▪ An approach for verifying the temporal behavior of a system

▪ Primarily fully-automated (“push-button”) techniques

▪ Model

▪ Representation of the system

▪ Need to decide the right level of granularity

▪ Specification

▪ High-level desired property of system

▪ Considers infinite sequences

▪ PSPACE-complete for FSMs

Model Checker

Model Spec

Counter-

Example
Proof

(optional)

Modeling: Transition Systems

▪ Model checking typically operates over Transition Systems

▪ A (symbolic) state machine

▪ A Transition System is ⟨𝑆, 𝐼, 𝑇⟩

▪ 𝑆: a set of states

▪ 𝐼: a set of initial states (sometimes use 𝐼𝑛𝑖𝑡 instead of 𝐼 for clarity)

▪ 𝑇: a transition relation: 𝑇 ⊆ 𝑆 × 𝑆

▪ 𝑇 𝑠0, 𝑠1 holds when there is a transition from 𝑠0 to 𝑠1

Symbolic Transition Systems in Practice

▪ States are made up of state variables 𝑣 ∈ 𝑉

▪ A state is an assignment to all variables

▪ A Transition System is ⟨𝑉, 𝐼, 𝑇⟩

▪ 𝑉: a set of state variables, 𝑉′ denotes next state variables

▪ 𝐼: a set of initial states

▪ 𝑇: a transition relation

▪ 𝑇 𝑣0, … , 𝑣𝑛, 𝑣0
′ , … , 𝑣𝑛

′ holds when there is a transition

▪ Note: will often still use 𝑠 to denote symbolic states (just know they’re made up of variables)

▪ Symbolic state machine is built by translating another representation

▪ E.g. a program, a mathematical model, a hardware description, etc…

Symbolic Transition System Example

▪ 2 variables: 𝑉 = 𝑣0, 𝑣1

▪ 𝑆0 ≔ ¬𝑣0 ∧ ¬𝑣1, 𝑆1 ≔ ¬𝑣0 ∧ 𝑣1

▪ 𝑆2 ≔ 𝑣0 ∧ ¬𝑣1, 𝑆3 ≔ 𝑣0 ∧ 𝑣1

▪ Transition relation
¬𝑣0 ∧ ¬𝑣1 ⇒ ¬𝑣0

′ ∧ 𝑣1
′ ∨ 𝑣0

′ ∧ ¬𝑣1
′ ∧

¬𝑣0 ∧ 𝑣1 ⇒ 𝑣0
′ ∧ 𝑣1

′ ∧
𝑣0 ∧ ¬𝑣1 ⇒ 𝑣0

′ ∧ 𝑣1
′ ∧

𝑣0 ∧ 𝑣1 ⇒ (𝑣0
′ ∧ 𝑣1

′)

S0

S1

S2

S3

Modeling: Transition System Executions

▪ An execution is a sequence of states that respects 𝐼 in the first state and 𝑇
between every adjacent pair

▪ 𝜋 ≔ 𝑠0 𝑠1 …𝑠𝑛 is a finite sequence if 𝐼 𝑠0 ∧ 𝑖=1ٿ
𝑛 𝑇(𝑠𝑖−1, 𝑠𝑖)

Meta Note: State Machine vs Execution
Diagrams

State Machine uses capitals

S0

S1

S2

S3

Symbolic execution uses lowercase

Concrete Execution:

s0=S0, s1=S2, s2=S3, s3=S3

s0 s1 s2 s3

Specification: Historical

▪ Original approaches considered equivalence only

▪ Model 𝑀1 implements model 𝑀2 exactly

▪ Duality between model and specification

▪ The specification is itself a model

▪ But the big innovation is that it can be a partially specified model

▪ And can have loose definitions of timing, e.g. something eventually happens

▪ Specification is typically higher-level, abstract behavior

▪ Language considerations

▪ Specification language should be sufficiently different from the implementation language

▪ i.e. can always prove that 𝑀1 ≡ 𝑀1, but that’s useless

Specification: Linear Temporal Logic

▪ Notation: 𝑀 ⊨ 𝑓

▪ Transition System model, 𝑀, entails LTL property, 𝑓, for ALL possible paths

▪ i.e. LTL is implicitly universally quantified

▪ Other logics include

▪ CTL: computational tree logic (branching time)

▪ CTL*: combination of LTL and CTL

▪ MTL: metric temporal logic (for regions of time)

Specification: Linear Temporal Logic

▪ State formula 𝑃 ⊆ 𝑆:

▪ Holds iff 𝑠0 ∈ 𝑃

▪ X operator: 𝑋(𝑃)

▪ Next time

▪ Holds iff the next state meets property P

▪ G operator: G(P)

▪ Globally holds

▪ True iff every reachable state meets property P

s0 s1 s2 s3

s0 s1 s2 s3

s0 s1 s2 s3 …

Specification: Linear Temporal Logic

▪ F operator: F(P)

▪ Finally

▪ True iff P eventually holds

▪ U operator: P1 U P2

▪ Until

▪ True iff P1 holds up until (but not necessarily including) a state where P2 holds

▪ P2 must hold at some point

s0 s1 s2 sk…

s0 s1 sk… 𝑠𝑘+1

Specification: Linear Temporal Logic

▪ LTL operators can be composed

▪ 𝐺 𝑅𝑒𝑞 ⇒ 𝐹 𝐴𝑐𝑘

▪ Every request eventually acknowledged

▪ 𝐺(𝐹 𝐷𝑒𝑣𝑖𝑐𝑒𝐸𝑛𝑎𝑏𝑙𝑒𝑑)

▪ The device is enabled infinitely often (from every state, it’s eventually enabled again)

▪ 𝐹(𝐺 ¬𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑖𝑛𝑔)

▪ Eventually it’s not initializing

▪ E.g. there is some initialization procedure that eventually ends and never restarts

Specification Safety vs. Liveness

▪ Safety: “something bad does not happen”

▪ State invariant, e.g. 𝐺(¬𝑏𝑎𝑑)

▪ Liveness: “something good eventually happens”

▪ Eventuality, e.g. G𝐹(𝑔𝑜𝑜𝑑)

▪ Fairness conditions

▪ Fair traces satisfy each of the fairness conditions infinitely often

▪ E.g. only fair if it doesn’t delay acknowledging a request forever

▪ Every property can be written as a conjunction of a safety and liveness property

Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181–185, October 1985.

Specification: Liveness to Safety

▪ Can reduce liveness to safety checking by modifying the system

▪ For SAT-based:

Armin Biere, Cyrille Artho, Viktor Schuppan. Liveness Checking as Safety Checking,

Electronic Notes in Theoretical Computer Science. 2002

▪ Several approaches for first-order logic

▪ From now on, we consider only safety properties

Historical Verification Approaches: Explicit State

▪ Tableaux-style state exploration

▪ Form of depth-first search

▪ Many clever tricks for reducing search space

▪ Big contribution is handling temporal logics (including branching time)

Historical Verification Approaches: BDDs

▪ Binary Decision Diagrams (BDDs)

▪ Manipulate sets of states symbolically

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic Model
Checking: 1020 States and beyond

▪ Great BDD resource

▪ http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/somenzi99bdd.pdf

http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/somenzi99bdd.pdf

Historical Verification Approaches: BDDs

▪ Represent Boolean formula as a decision diagram

▪ Example: (𝑥1∧ 𝑥2) ∨ (𝑥3 ∧ 𝑥4)

▪ Can be much more succinct than other representations

Credit for Example: Introduction to Formal Hardware Verification – Thomas Kropf

𝑥1

𝑥3

𝑥2

𝑥4

F T

T

T

T

T

F

F

F

F

BDDs: Cofactoring

▪ 𝑓ȁ¬𝑥2 for BDD 𝑓 is fixing 𝑥2 to be negative

𝑥1

𝑥3

𝑥2

𝑥4

F T

T

T

T

T

F

F

F

F

𝑥1

𝑥3

𝑥2

𝑥4

F T

T

T

T

T

F

F

F

F

𝑥3

𝑥4

F T

T

F

F

Credit for Example: Introduction to Formal Hardware Verification – Thomas Kropf

Redirect incoming edges

to assignment (F)

After reduction

BDD Operators

▪ Negation

▪ Swap leaves (F → T)

▪ AND

▪ All Boolean operators implemented
recursively

▪ These two operators are sufficient

Image Credit: Introduction to Formal Hardware Verification – Thomas Kropf

BDD Image Computation

▪ Current reachable states are BDD 𝑅

▪ Over variable set 𝑉

▪ Compute next states with:

▪ 𝑁 ≔ ∃𝑉 𝑇 𝑉, 𝑉′ ∧ 𝑅(𝑉)

▪ Existential is cofactoring: ∃𝑥 𝑓 𝑥 ≔ (𝑥 ∧ 𝑓ȁ𝑥) ∨ (¬𝑥 ∧ 𝑓ȁ¬𝑥)

▪ aka Shannon Expansion

▪ Grow reachable states

▪ 𝑅 = 𝑅 ∨ 𝑁[𝑉′/𝑉]

▪ Map next-state variables to current state, then add to reachable states

BDD-based model checking

▪ Start with 𝑅 = 𝐼𝑛𝑖𝑡

▪ Keep computing image and growing reachable states

▪ Stop when there’s a fixpoint (reachable states not growing)

▪ Can handle ~1020 states

▪ More with abstraction techniques and compositional model checking

BDD: Variable Ordering

▪ Good variable orderings can be exponentially more compact

▪ Finding a good ordering is NP-complete

▪ There are formulas that have no non-exponential ordering: multipliers

Image Credit: https://en.wikipedia.org/wiki/Binary_decision_diagram

https://en.wikipedia.org/wiki/Binary_decision_diagram

SAT-based model checking

▪ Edmund Clarke

▪ One of the founders of model checking

▪ SAT solving taking off

▪ Clarke hired several post-doctoral students to try to use SAT as an oracle to solve
model checking problems

▪ Struggled for a while to find a general technique

▪ What if you give up completeness? → Bounded Model Checking

Armin Biere, Alessandro Cimatti, Edmund Clarke, Yunshan Zhu. Symbolic Model
Checking without BDDs. TACAS 1999

Bounded Model Checking (BMC)

▪ Sacrifice completeness for quick bug-finding

▪ Unroll the transition system

▪ Each variable 𝑣 ∈ 𝑉 gets a new symbol for each time-step, e.g. 𝑣𝑘 is 𝑣 at time k

▪ Space-Time duality: unrolls temporal behavior into space

▪ For increasing values of k, check:

▪ 𝐼 𝑠0 ∧ 𝑖=1ٿ
𝑘 𝑇 𝑠𝑖−1, 𝑠𝑖 ∧ ¬𝑃 𝑠𝑘

▪ If it is ever SAT, return FALSE

▪ Can construct a counter-example trace from the solver model

BMC Graphically

𝑠0 𝑠1 𝑠2 𝑠𝑘

¬𝑃 𝑠𝑘 ?

…

𝐼(𝑠0)

𝑠0 must be an initial state Check if it can violate the

property at time k

Bounded Model Checking: Completeness

▪ Completeness condition: reaching the diameter

▪ Diameter: 𝑑

▪ The depth needed to unroll to such that every possible state is reachable in 𝑑 steps or less

▪ Recurrence diameter: 𝑑𝑟
▪ The depth such that every execution of the system of length ≥ 𝑑𝑟 must revisit states

▪ Can be exponentially larger than the diameter

▪ 𝑑𝑟 ≥ 𝑑

▪ Very difficult to compute the diameter

▪ Requires a quantifier: find 𝑑 such that any state reachable at 𝑑 + 1 is also reachable in
≤ 𝑑 steps

K-Induction

▪ Extends bounded model checking to be able to prove properties

▪ Based on the concept of (strong) mathematical induction

▪ For increasing values of k, check:

▪ Base Case: 𝐼 𝑠0 ∧ 𝑖=1ٿ
𝑘 𝑇 𝑠𝑖−1, 𝑠𝑖 ∧ ¬𝑃 𝑠𝑘

▪ Inductive Case: ٿ𝑖=1
𝑘 𝑇 𝑠𝑖−1, 𝑠𝑖 ∧ 𝑃 𝑠𝑖−1 ∧ ¬𝑃(𝑠𝑘)

▪ If base case is SAT, return a counter-example

▪ If inductive case is UNSAT, return TRUE

▪ Otherwise, continue

Mary Sheeran, Satnam Singh, and Gunnar Stälmarck. Checking safety properties using
induction and a SAT-solver. FMCAD 2000

K-Induction Graphically

𝑠0 𝑠1 𝑠2 𝑠𝑘

¬𝑃 𝑠𝑘 ?

…

𝑠0 𝑠1 𝑠2 𝑠𝑘

¬𝑃 𝑠𝑘 ?

…

Arbitrary starting state 𝑠0
such that 𝑃 𝑠0 holds

𝑃 𝑠0 𝑃 𝑠1 𝑃 𝑠2

𝑠𝑘−1

𝑃 𝑠𝑘−1

𝐼(𝑠0)

𝑠0 must be an initial state

Base Case

Inductive Case…

K-Induction: Simple Path

s0 s1 s2 s3

: not equal

▪ This approach can be complete over a finite
domain

▪ requires the simple path constraint

▪ each state is distinct from other states in trace

▪ If simple path is UNSAT, then we can return true

K-Induction: Simple Path

▪ This approach can be complete over a finite
domain

▪ requires the simple path constraint

▪ each state is distinct from other states in trace

▪ If simple path is UNSAT, then we can return true

s0 s1 s2 s3

: not equal

Why?

S0 S1

S2 S3

Without simple path, inductive step could get:

S2 S2 S2 S3…

K-Induction Observation

▪ Crucial observation

▪ Does not depend on direct computation of reachable state space

▪ Beginning of “property directed” techniques

▪ We do not need to know the exact reachable states, as long as we can guarantee they
meet the property

▪ “Property directed” is associated with a family of techniques that build inductive
invariants automatically

Inductive Invariants

▪ The goal of most modern model checking algorithms

▪ Over finite-domain, just need to show that algorithm makes progress, and it will
eventually find an inductive invariant

▪ E.g. in the worst case, the reachable states are themselves an inductive invariant

▪ Hopefully there’s an easier to find inductive invariant that is sufficient

▪ Inductive Invariant: 𝐼𝐼

▪ 𝐼𝑛𝑖𝑡(𝑠) ⇒ 𝐼𝐼(𝑠)

▪ T 𝑠, 𝑠′ ∧ 𝐼𝐼(𝑠) ⇒ 𝐼𝐼(𝑠′)

▪ 𝐼𝐼 𝑠 ⇒ 𝑃(𝑠)

State Space

Property

Simple Inductive

Invariant

Reachable

States

Advanced: Relative Induction

▪ Inductive Invariant:

▪ 𝑎 ≥ 0 ∧ 𝑏 ≥ 0 ∧ 𝑐 ≥ 0

▪ Incremental induction

▪ Guess: 𝑎 ≥ 0

▪ Induction: 𝑐 ≥ 0, relative to 𝑎 ≥ 0

▪ Induction: 𝑏 ≥ 0, relative to 𝑎 ≥ 0 ∧ 𝑐 ≥ 0

▪ Prove: 𝑎 ≥ 0

▪ Break circularity with induction

Credit for Example: Oded Padon

a = 0 ; b = 0 ; c = 0

while * do:

assert a ≥ 0

a’ = a + b

b’ = b + c

c’ = c + 1 + a

Advanced: Relative Induction

▪ Break circularity with induction

▪ Guess 𝑎 ≥ 0

▪ 𝐼𝑛𝑖𝑡 ⊨ 𝑎 ≥ 0 ∧ 𝑐 ≥ 0,

▪ Relative Induction: 𝑎 ≥ 0 ∧ 𝑐 ≥ 0 ⊨ 𝑐′ ≥ 0

▪ 𝐼𝑛𝑖𝑡 ⊨ 𝑎 ≥ 0 ∧ 𝑐 ≥ 0 ∧ 𝑏 ≥ 0

▪ Induction: 𝑎 ≥ 0 ∧ 𝑐 ≥ 0 ∧ 𝑏 ≥ 0 ⊨ 𝑎′ ≥ 0 ∧ 𝑐′ ≥ 0 ∧ 𝑏′ ≥ 0

▪ The last inductive proof is a complete proof

▪ But obtaining the inductive invariant by first guessing 𝑎 ≥ 0, then finding 𝑐 ≥ 0 could be
easier

Credit for Example: Oded Padon

a = 0 ; b = 0 ; c = 0

while * do:

assert a ≥ 0

a’ = a + b

b’ = b + c

c’ = c + 1 + a

Advanced Algorithms

▪ Interpolant-based model checking

▪ Constructs an overapproximation of the reachable states

▪ Terminates when it finds an inductive invariant or a counterexample

▪ IC3 / PDR

▪ Computes over (under) approximations of forward (backward) reachable states

▪ Refines approximations by guessing relative inductive invariants

▪ Terminates when it finds an inductive invariant or a counterexample

Thank you!

