CS 357: Advanced Topics in Formal Methods Fall 2019

Lecture 16

Aleksandar Zeljić
Stanford University

Proofs

- Why proofs?
- What do we prove?
- What is the proof engine of SAT solvers?

Resolution Proof System

- Axioms: Clauses of the formula
- Inference rule:

$$
\frac{c \vee I \quad d \vee \neg /}{c \vee d} \text { Resolution }
$$

- Refutation ends with derivation of an empty clause - \square

Example

$$
(x \vee y) \wedge(x \vee \neg y \vee z) \wedge(\neg x \vee z) \wedge(\neg y \vee \neg z) \wedge(\neg x \vee \neg z)
$$

Example

$$
(x \vee y) \wedge(x \vee \neg y \vee z) \wedge(\neg x \vee z) \wedge(\neg y \vee \neg z) \wedge(\neg x \vee \neg z)
$$

Two representations:

- Annotated list
- DAG

Resolution complexity

- Number of clauses in a refutation is its size/length.
- Length of refuting ϕ - length of the shortest refutation
- Yields lower bound on the solving time using CDCL
- Upper bound: $\exp (O(N))$
- Lower bound: $\exp (\Omega(N))$

Known provably exponential classes

Pigeon-hole principle formulas / Dirichlet's box principle

- Place $\mathrm{N}+1$ pigeons into N holes. No hole may hold more than one pigeon.
- Variables: $p_{i, j}$ - pigeon i belongs to hole j
- Every pigeon gets a hole

$$
p_{i, 1} \vee p_{i, 2} \vee \ldots \vee p_{i, j}, \quad \forall i \in\{1,2, \ldots, N+1\}
$$

- Every hole gets at most one pigeon

$$
\neg p_{i, j} \vee \neg p_{i^{\prime}, j}, \quad \forall i, i^{\prime} \in\{1,2 \ldots, N+1\}, \forall j \in\{1,2 \ldots, N\}
$$

PHP

Adding extra axioms:

- Functionality axioms - no pigeon gets two holes:

$$
\neg p_{i, j} \vee \neg p_{i, j^{\prime}}, \quad \forall j, j^{\prime} \in\{1,2, \ldots, N+1\}
$$

- Onto axioms - every hole gets a pigeon:

$$
p_{1, j} \vee p_{2, j} \vee \ldots \vee p_{N+1, j}, \quad \forall i \in\{1,2, \ldots, N+1\}
$$

Does not help - Resolution cannot count
Many other examples - Random k-CNF, Tseitin graphs, etc.

SAT solvers expect more

Extended Resolution [Tseitin]

- extension rule + resolution rule
- Extension:

$$
x:=a \wedge b \equiv(x \vee \neg a \vee \neg b) \wedge(\neg x \vee a) \wedge(\neg x \vee b)
$$

- Exponentially stronger system than just resolution
- No known results on exponential lower bounds
- Pre-/in-processing steps are challenging to capture
- Not compact enough, keeps deriving consequences

Redundancy-based clausal proofs

Proof:

Sequence of clauses, ending with the empty clause, that are redundant w.r.t. ϕ

- Allows addition and deletion of redundant clauses
- All derivations satisfy efficiently checkable syntactic criterion
- DRAT is the de facto standard nowadays
- Equivalent to Extended Resolution

Hierarchy of Redundant properties

Classes of redundant properties:

T - Tautology:

$$
(p \vee \neg p)
$$

Classes of redundant properties:

T-Tautology:

$$
(p \vee \neg p)
$$

AT - Asymmetric tautology

- $A L A(\phi, C)$ - Asymmetric literal addition, repeat until fix-point:

$$
\exists(C \vee I) \in \phi \backslash\{C\} \text { then } C:=C \vee \neg l
$$

- AT - $A L A(\phi, C)$ has property T
- a.k.a. RUP - reverse unit propagation:

$$
\square \in B C P(\phi, \neg C)
$$

Classes of redundant properties:

RT - Resolution Tautology (a.k.a. blocked clauses):

1. $C=\left(I_{1} \vee I_{2} \vee \ldots \vee I_{n} \vee I\right)$ has property T or
2. exists $I \in C$ s.t. for each clause $C^{\prime} \in \phi: \neg I \in C^{\prime}$, every resolvent of C and C^{\prime} over $/$ has property T

Classes of redundant properties:

RT - Resolution Tautology (a.k.a. blocked clauses):

1. $C=\left(I_{1} \vee I_{2} \vee \ldots \vee I_{n} \vee I\right)$ has property T or
2. exists $I \in C$ s.t. for each clause $C^{\prime} \in \phi: \neg I \in C^{\prime}$, every resolvent of C and C^{\prime} over I has property T

RAT - Resolution Asymmetric Tautology

1. $C=\left(I_{1} \vee I_{2} \vee \ldots \vee I_{n} \vee I\right)$ has property AT or
2. exists $I \in C$ s.t. for each clause $C^{\prime} \in \phi: \neg I \in C^{\prime}$, every resolvent of C and C^{\prime} over I has property AT

Example

$$
\phi:(a \vee b) \wedge(b \vee c) \wedge(\neg b \vee \neg c)
$$

Which redundant properties have the following clauses:

- $a \vee \neg a$

Example

$$
\phi:(a \vee b) \wedge(b \vee c) \wedge(\neg b \vee \neg c)
$$

Which redundant properties have the following clauses:

- $a \vee \neg a$

$$
T(A T, R T, R A T)
$$

- $a \vee \neg c$

Example

$$
\phi:(a \vee b) \wedge(b \vee c) \wedge(\neg b \vee \neg c)
$$

Which redundant properties have the following clauses:

- $a \vee \neg a$
- $a \vee \neg c$

$$
\begin{array}{r}
T(A T, R T, R A T) \\
A T, R T,(R A T)
\end{array}
$$

- $\neg a \vee c$

Example

$$
\phi:(a \vee b) \wedge(b \vee c) \wedge(\neg b \vee \neg c)
$$

Which redundant properties have the following clauses:

- $a \vee \neg a$
- $a \vee \neg c$
- $\neg a \vee c$

Note: For RAT, all resolvents over one literal should have AT property, this is the case for resolvents over a

DRAT - Deletion RAT

- RAT clauses are expressive enough!
- Adding RAT clauses preserves satisfiability
- Deleting RAT clause preserves unsatisfiability
- Clauses are efficiently checkable (using BCP)
- Overall process is still expensive
- Allows trimming of formulas
- Optimized proofs
- Pythagorean Triples: 200TB resolution proof takes 67 GB in DRAT

Example

Consider the problem of:

Avoiding monochromatic solutions of the equation:

$$
a+b=c, \text { with } a<b<c,
$$

while coloring the natural numbers with two colors.

- Smallest counter-example: $\{1,2,3, \ldots, 9\}$
- Encode into sat using 9 variables:

$$
v_{i}=\left\{\begin{array}{ll}
T, & \text { if } i \text { is red } \\
F, & \text { if } i \text { is blue }
\end{array} \quad i \in\{1,2, \ldots, 9\}\right.
$$

Example

p	$c n f$	9	32					
1	2	3	0	-1	-2	-3	0	
1	3	4	0		-1	-3	-4	0
1	4	5	0		-1	-4	-5	0
2	3	5	0	-2	-3	-5	0	
1	5	6	0	-1	-5	-6	0	
2	4	6	0	-2	-4	-6	0	
1	6	7	0	-1	-6	-7	0	
2	5	7	0	-2	-5	-7	0	
3	4	7	0	-3	-4	-7	0	
1	7	8	0	-1	-7	-8	0	
2	6	8	0	-2	-6	-8	0	
3	5	8	0	-3	-5	-8	0	
1	8	9	0	-1	-8	-9	0	
2	7	9	0	-2	-7	-9	0	
3	6	9	0	-3	-6	-9	0	
4	5	9	0	-4	-5	-9	0	

Example

$$
\begin{aligned}
& \text { p inf } 932 \\
& \begin{array}{llllllll}
1 & 2 & 3 & 0 & & -1 & -2 & -3 \\
0 \\
1 & 3 & 4 & 0 & & -1 & -3 & -4 \\
0 \\
1 & 4 & 5 & 0 & & -1 & -4 & -5 \\
2 & 3 & 5 & 0 & & -2 & -3 & -5 \\
0
\end{array} \\
& \begin{array}{llllllll}
1 & 5 & 6 & 0 & -1 & -5 & -6 & 0
\end{array} \\
& -2-4-60 \\
& \text {-1 }-6 \text {-7 } 0 \\
& -2-5-70 \\
& \begin{array}{llll}
-3 & -4 & -7 & 0
\end{array} \\
& \text {-1 }-7 \text {-8 } 0 \\
& -2 \text {-6 -8 } 0 \\
& \text {-3 -5 -8 } 0 \\
& \text {-1 }-8 \text {-9 } 0 \\
& 279 \\
& \text {-2 -7 -9 } 0 \\
& 3690 \\
& \text {-3 -6 -9 } 0 \\
& \begin{array}{llllllll}
4 & 5 & 9 & 0 & -4 & -5 & -9 & 0
\end{array} \\
& \text { DRAT proof: }
\end{aligned}
$$

Example

$$
\begin{array}{lllllllllll}
\text { p cnf } 9 & 32 & & & & & \\
1 & 2 & 3 & 0 & -1 & -2 & -3 & 0 & & \\
1 & 3 & 4 & 0 & -1 & -3 & -4 & 0 & & \\
1 & 4 & 5 & 0 & -1 & -4 & -5 & 0 & & \text { DRAT proof: } \\
2 & 3 & 5 & 0 & -2 & -3 & -5 & 0 & & \\
1 & 5 & 6 & 0 & -1 & -5 & -6 & 0 & 1 & 0 \\
2 & 4 & 6 & 0 & -2 & -4 & -6 & 0 & 1 & 0 \\
1 & 6 & 7 & 0 & -1 & -6 & -7 & 0 & 4 & 0 \\
2 & 5 & 7 & 0 & -2 & -5 & -7 & 0 & & 0 \\
3 & 4 & 7 & 0 & -3 & -4 & -7 & 0 & & \\
1 & 7 & 8 & 0 & -1 & -7 & -8 & 0 & & \\
2 & 6 & 8 & 0 & -2 & -6 & -8 & 0 & & 512 \text { possible } \\
3 & 5 & 8 & 0 & -3 & -5 & -8 & 0 & & \text { partitions } \\
1 & 8 & 9 & 0 & -1 & -8 & -9 & 0 & & 4 \text { line proof } \\
2 & 7 & 9 & 0 & -2 & -7 & -9 & 0 & &
\end{array}
$$

Unsat cores

Unsatisiable core of formula ϕ

A subset of ϕ that is still unsatisafiable.

- A core is minimal if removing any conjunct turns it satisfiable.
- How can we extract unsat cores?
- How can we minimize them?
- What can they be used for?
- In practice: https://rise4fun.com/Z3/smtc_core

Craig interpolation

Craig interpolant:

Suppose formula $\alpha \wedge \beta$ is unsatisafiable. There exists a formula I over literal in both α and β s.t.:

1. $\alpha \rightarrow$ I and
2. $I \wedge \beta$ is unsatisafiable.

Craig interpolation

Craig interpolant:

Suppose formula $\alpha \wedge \beta$ is unsatisafiable. There exists a formula I over literal in both α and β s.t.:

1. $\alpha \rightarrow$ I and
2. $I \wedge \beta$ is unsatisafiable.

- Explanation genralization / Conflict minimization
- In Model Checking: discovering relevant predicates and abstractions

