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Outline

I Recap

I Propositional connectives (cont.)

I Compactness

I CNF, Converting to CNF

I Modeling using propositional logic

I Computability and Decidability

Material is drawn from Chapter 1 of Enderton.
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Definitions

If α is a wff , then a truth assignment v satisfies α if v(α) = T.

A wff α is satisfiable if there exists some truth assignment v which satisfies α.

Suppose Σ is a set of wffs. Then Σ tautologically implies α, Σ |= α, if every
truth assignment which satisfies each formula in Σ also satisfies α.

Particular cases:

I If ∅ |= α, then we say α is a tautology or α is valid and write |= α.

I If Σ is unsatisfiable, then Σ |= α for every wff α.

I If α |= β (shorthand for {α} |= β) and β |= α, then α and β are
tautologically equivalent.

I Σ |= α if and only if
∧

(Σ)→ α is valid.
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Completeness of Propositional Connectives

Example

Let G be a 3-place Boolean function defined as follows:

G(F,F,F) = F
G(F,F,T) = T
G(F,T,F) = T
G(F,T,T) = F
G(T,F,F) = T
G(T,F,T) = F
G(T,T,F) = F
G(T,T,T) = T

There are four points at which G is true, so a DNF formula which realizes G is

(¬A1 ∧ ¬A2 ∧ A3) ∨ (¬A1 ∧ A2 ∧ ¬A3) ∨ (A1 ∧ ¬A2 ∧ ¬A3) ∨ (A1 ∧ A2 ∧ A3).

Note that another formula which realizes G is A1 ↔ A2 ↔ A3. Thus, adding
additional connectives to a complete set may allow a function to be realized
more concisely.
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Incompleteness of Connectives

To prove that some set of connectives is incomplete, we find a property that is
true of all wffs built using those connectives, but that is not true for some
Boolean function.

Example

{∧,→} is not complete.

Proof

Let α be a wff which uses only these connectives, and let v be a truth
assignment such that v(Ai ) = T for all Ai . We prove by induction that
v(α) = T.

Base Case

v(Ai ) = v(Ai ) = T.

Inductive Case

v(β ∧ γ) = min(v(β), v(γ)) = min(T,T) = T
v(β → γ) = max(T− v(α), v(β)) = max(F,T) = T

Thus, v(α) = T for all wffs α built from {∧,→}. But v(¬A1) = F, so there is
no such formula tautologically equivalent to ¬A1. 2
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Other Propositional Connectives

For each n, there are 22n different n-place Boolean functions B(X1, . . . ,Xn)

Why?

There are 2n different input points and 2 possible output values for each input
point. 22n is also the number of possible n-ary propositional connectives.

0-ary connectives

There are two 0-place Boolean functions: the constants F and T. We can
construct corresponding 0-ary connectives ⊥ and > with the meaning that
v(⊥) = F and v(>) = T regardless of the truth assignment v .

Unary connectives

There are four 1-place functions, but these include the two constant functions
mentioned above and the identity function. Thus the only additional
connective of interest is negation: ¬.

Binary connectives

There are sixteen 2-place Boolean functions. They are cataloged in the
following table. Note that the first six correspond to 0-ary and unary
connectives.
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Symbol Equivalent Description
⊥ constant F
> constant T
A projection of first argument
B projection of second argument
¬A negation of first argument
¬B negation of second argument

∧ A ∧ B and
∨ A ∨ B or
→ A→ B conditional
↔ A↔ B bi-conditional
← B → A reverse conditional
⊕ (A ∧ ¬B) ∨ (¬A ∧ B) exclusive or
↓ ¬(A ∨ B) nor (or Nicod stroke)
| ¬(A ∧ B) nand (or Sheffer stroke)
< ¬A ∧ B less than
> A ∧ ¬B greater than



Compactness

Recall that a wff α is satisfiable if there exists a truth assignment v such that
v(α) = T.

A set Σ of wffs is satisfiable if there exists a truth assignment v such that
v(α) = T for each α ∈ Σ.

A set Σ is finitely satisfiable iff every finite subset of Σ is satisfiable.

Compactness Theorem

A set of wffs is satisfiable iff it is finitely satisfiable.

Proof

The only if direction is trivial since any subset of a satisfiable set is clearly
satisfiable.

To prove the other direction, assume that Σ is a set which is finitely satisfiable.
We must show that Σ is satisfiable.
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Compactness

Let Σ be finitely satisfiable. We extend Σ to form a maximal finitely satisfiable
set ∆ as follows.

Let α1, . . . , αn, . . . be a fixed enumeration of all wffs.

Why is this possible?

The set of all sequences of a countable set is countable.

Then, let ∆0 = Σ,

∆n+1 =

{
∆n ∪ {αn+1} if this is finitely satisfiable,
∆n ∪ {¬αn+1} otherwise.

It is not hard to show that each ∆n is finitely satisfiable.

Let ∆ =
⋃

n ∆n. It is then clear that

1. Σ ⊆ ∆

2. α ∈ ∆ or ¬α ∈ ∆ for any wff α, and

3. ∆ is finitely satisfiable.
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Compactness

Now we show that ∆ is satisfiable (and thus Σ ⊆ ∆ is also satisfiable).

Define a truth assignment v as follows. For each propositional symbol Ai ,

v(Ai ) = T iff Ai ∈ ∆.

We claim that for any wff α, v satisfies α iff α ∈ ∆. The proof is by induction
on well-formed formulas.

Base Case

Follows directly from the definition of v .

Induction Case

We will just consider one case. Suppose α = β ∧ γ. Then

v(α) = T iff both v(β) = T and v(γ) = T iff both β ∈ ∆ and γ ∈ ∆.

Now, if both β and γ are in ∆, then since {β, γ,¬α} is not satisfiable, we must
have α ∈ ∆.

Similarly, if one of β or γ is not in ∆, then its negation must be in ∆, so
α 6∈ ∆. 2
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We claim that for any wff α, v satisfies α iff α ∈ ∆. The proof is by induction
on well-formed formulas.

Base Case

Follows directly from the definition of v .

Induction Case

We will just consider one case. Suppose α = β ∧ γ. Then

v(α) = T iff both v(β) = T and v(γ) = T iff both β ∈ ∆ and γ ∈ ∆.

Now, if both β and γ are in ∆, then since {β, γ,¬α} is not satisfiable, we must
have α ∈ ∆.

Similarly, if one of β or γ is not in ∆, then its negation must be in ∆, so
α 6∈ ∆. 2



Compactness

Corollary

If Σ |= α then there is a finite Σ0 ⊆ Σ such that Σ0 |= α.

Proof

Suppose that Σ0 6|= α for every finite Σ0 ⊆ Σ.

Then, Σ0 ∪ {¬α} is satisfiable for every finite Σ0 ⊆ Σ.

So, by compactness, Σ ∪ {¬α} is satisfiable which contradicts the fact that
Σ |= α.

2



Boolean Circuits

The inputs and outputs of Boolean gates can be connected together to form a
combinational Boolean circuit.

D

C

B

A

There is a natural correspondence between Boolean circuits and formulas of
propositional logic. The formula corresponding to the above circuit is:

(D ∧ (A ∧ B)) ∨ ((A ∧ B) ∧ ¬C).

A satisfying assignment for this formula gives the values that must be applied
to the inputs of the circuit in order to set the output of the circuit to true.

In this lecture, we will refer to propositional symbols such as A, B, etc. as
propositional variables.



Sharing Sub-Expressions

(D ∧ (A ∧ B)) ∨ ((A ∧ B) ∧ ¬C)

This formula highlights an inefficiency in the logic representation as compared
with the circuit representation: the formula A ∧ B appears twice. For larger
circuits, this kind of redundancy can result in an exponential blow-up in the
size of the corresponding formula.

We can overcome this inefficiency by replacing the redundant sub-expression
with a new place-holder variable. We then conjoin a new formula which says
that the new variable is equivalent to the replaced expression:

((D ∧ E) ∨ (E ∧ ¬C)) ∧ (E ↔ (A ∧ B))

Note that the new formula is not tautologically equivalent to the original
formula (why?).

But it is equisatisfiable (i.e. the original formula is satisfiable iff the new
formula is satisfiable). Since we are only concerned with the satisfiability of the
formula, this is sufficient.
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Converting to CNF

This same idea is behind a simple algorithm for converting any propositional
formula (or an associated Boolean circuit) into an equisatisfiable formula in
conjunctive normal form (CNF) in linear time and space. We will view the
formula or circuit as a DAG.

1. Label each non-leaf node of the DAG with a new propositional variable.

2. Construct a conjunction of disjunctive clauses which relate the inputs of that
node to its output (the new propositional variable)

3. The conjunction of all of these clauses together with a single clause
consisting of the variable for the root node is satisfiable iff the original formula
is satisfiable.



Converting to CNF: Example

D
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I

(A ∧ B)↔ E
((A ∧ B)→ E) ∧ (E → (A ∧ B))
(¬(A ∧ B) ∨ E) ∧ (¬E ∨ (A ∧ B))
(¬A ∨ ¬B ∨ E) ∧ (¬E ∨ A) ∧ (¬E ∨ B)

(¬A ∨ ¬B ∨ E) ∧ (¬E ∨ A) ∧ (¬E ∨ B)∧
(¬C ∨ F ) ∧ (¬F ∨ C)∧
(¬D ∨ ¬E ∨ G) ∧ (¬G ∨ D) ∧ (¬G ∨ E)∧
(¬E ∨ ¬F ∨ H) ∧ (¬H ∨ E) ∧ (¬H ∨ F )∧
(G ∨ H ∨ ¬I ) ∧ (I ∨ ¬G) ∧ (I ∨ ¬H)∧
(I )
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CNF Representation

(¬A ∨ ¬B ∨ E) ∧ (¬E ∨ A) ∧ (¬E ∨ B)∧
(¬C ∨ F ) ∧ (¬F ∨ C)∧
(¬D ∨ ¬E ∨ G) ∧ (¬G ∨ D) ∧ (¬G ∨ E)∧
(¬E ∨ ¬F ∨ H) ∧ (¬H ∨ E) ∧ (¬H ∨ F )∧
(G ∨ H ∨ ¬I ) ∧ (I ∨ ¬G) ∧ (I ∨ ¬H)∧
(I )

(A′ + B ′ + E)(E ′ + A)(E ′ + B)
(C ′ + F )(F ′ + C)
(D ′ + E ′ + G)(G ′ + D)(G ′ + E)
(E ′ + F ′ + H)(H ′ + E)(H ′ + F )
(G + H + I ′)(I + G ′)(I + H ′)
(I )



Standard Representation

Each variable is represented by a positive integer. A negative integer refers to
the negation of the variable. Clauses are given as sequences of integers
separated by spaces. A 0 terminates the clause.

(A′ + B ′ + E)(E ′ + A)(E ′ + B)
(C ′ + F )(F ′ + C)
(D ′ + E ′ + G)(G ′ + D)(G ′ + E)
(E ′ + F ′ + H)(H ′ + E)(H ′ + F )
(G + H + I ′)(I + G ′)(I + H ′)
(I )

-1 -2 5 0 -5 1 0 -5 2 0
-3 6 0 -6 3 0
-4 -5 7 0 -7 4 0 -7 5 0
-5 -6 8 0 -8 5 0 -8 6 0
7 8 -9 0 9 -7 0 9 -8 0
9 0



Boolean Satisfiability (SAT)

We have seen that there is a natural correspondence between checking Boolean
circuits and satisfiability of propositional formulas.

It turns out that Boolean satisfiability or SAT is widely useful for a variety of
problems.

SAT was the first problem ever shown to be NP-complete:

S. A. Cook. The Complexity of Theorem Proving Procedures. Pro-
ceedings of the Third Annual ACM Symposium on the Theory of Com-
puting, 151-158, 1971.

This means that:

I Unless P = NP, we will never find a polynomial algorithm to solve SAT.

I If we can nonetheless improve algorithms for SAT, there are many other
problems that could benefit.



Worst Case Upper Bounds for SAT

A weakly exponential upper bound is a bound of the form p(n)cn where c < 2
is a constant, n is the number of variables, and p is a polynomial. A k-SAT
solver solves SAT instances in which no clause has length greater than k. Some
interesting best-known bounds are as follows.

I General SAT: p(n)2n

I k-SAT: p(n)(2− 2
k+1

)n

I 3-SAT: p(n)1.481n

I 3-SAT formula with exactly one satisfying assignment: p(n)1.308n



Solving General Search Problems with SAT

Modeling

I Define a finite set of possibilities called states.

I Model states using (vectors of) propositional variables.

I Use propositional formulas to describe legal and illegal states.

Solving

I Construct a propositional formula describing the desired state.

I Translate the formula into an equisatisfiable CNF formula.

I If the formula is satisfiable, the satisfying assignment gives the desired
state.

I If the formula is not satisfiable, the desired state does not exist.



Example

Recall that a graph consists of a set V of vertices and a set E of edges, where
each edge is an unordered pair of distinct vertices.

A complete graph on n vertices is a graph with |V | = n such that E contains
all possible pairs of vertices.

How many edges are in a complete graph? n(n−1)
2

Problems involving graph coloring are important in both theoretical and
applied computer science.

Suppose we wish to color each edge of a complete graph without creating any
triangles in which all the edges have the same color.

What is the largest complete graph for which this is possible? The answer
depends on the number of colors we are allowed to use.

What if you are only allowed one color? Answer: n = 2

What if the number of colors is 2? Answer: n = 5

What if the number of colors is 3? This is a job for SAT
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Example

I Define a finite set of possibilities called states.

For this problem, each possible coloring is a state. There are 3|E | possible
states.

I Model states using (vectors of) propositional variables.

A simple encoding uses two propositional variables for each edge. Since
there are 4 possible combinations of values of two variables, this gives us a
state space of 4|E |, which is larger than we need, but keeps the encoding
simple.

I Use propositional formulas to describe legal and illegal states.

Since the color of each edge is modeled with 2 variables, there are 4
possible colors. We can write a set of formulas which disallow the fourth
color.
For example, if e1 and e2 are the variables for edge e, we simply require
¬(e1 ∧ e2).



Example

I Define a finite set of possibilities called states.
For this problem, each possible coloring is a state. There are 3|E | possible
states.

I Model states using (vectors of) propositional variables.

A simple encoding uses two propositional variables for each edge. Since
there are 4 possible combinations of values of two variables, this gives us a
state space of 4|E |, which is larger than we need, but keeps the encoding
simple.

I Use propositional formulas to describe legal and illegal states.

Since the color of each edge is modeled with 2 variables, there are 4
possible colors. We can write a set of formulas which disallow the fourth
color.
For example, if e1 and e2 are the variables for edge e, we simply require
¬(e1 ∧ e2).



Example

I Define a finite set of possibilities called states.
For this problem, each possible coloring is a state. There are 3|E | possible
states.

I Model states using (vectors of) propositional variables.
A simple encoding uses two propositional variables for each edge. Since
there are 4 possible combinations of values of two variables, this gives us a
state space of 4|E |, which is larger than we need, but keeps the encoding
simple.

I Use propositional formulas to describe legal and illegal states.

Since the color of each edge is modeled with 2 variables, there are 4
possible colors. We can write a set of formulas which disallow the fourth
color.
For example, if e1 and e2 are the variables for edge e, we simply require
¬(e1 ∧ e2).



Example

I Define a finite set of possibilities called states.
For this problem, each possible coloring is a state. There are 3|E | possible
states.

I Model states using (vectors of) propositional variables.
A simple encoding uses two propositional variables for each edge. Since
there are 4 possible combinations of values of two variables, this gives us a
state space of 4|E |, which is larger than we need, but keeps the encoding
simple.

I Use propositional formulas to describe legal and illegal states.
Since the color of each edge is modeled with 2 variables, there are 4
possible colors. We can write a set of formulas which disallow the fourth
color.
For example, if e1 and e2 are the variables for edge e, we simply require
¬(e1 ∧ e2).



Example

I Construct a propositional formula describing the desired state.

The desired state is one in which there are no triangles of the same color.
For each triangle made up of edges e, f , g , we require:
¬((e1 ↔ f1) ∧ (f1 ↔ g1) ∧ (e2 ↔ f2) ∧ (f2 ↔ g2)).

I Translate the formula into an equisatisfiable CNF formula.

This can be done using the CNF conversion algorithm we described earlier.

I If the formula is satisfiable, the satisfying assignment gives the desired
state.

An actual coloring can be constructed by looking at the values of each
variable given by the satisfying assignment.

I If the formula is not satisfiable, the desired state does not exist.

If the formula can be shown to be unsatisfiable, this is essentially a proof
that there is no coloring.

What if the number of colors is 3? Answer: n = 16

These and similar questions are studied in Ramsey theory .
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