CS 357: Advanced Topics in Formal Methods Fall 2019

Lecture 4

Aleksandar Zeljić (materials by Clark Barrett) Stanford University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called *Abstract DPLL*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called *Abstract DPLL*.

Abstract DPLL uses *states* and *transitions* to model the progress of the algorithm.

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called *Abstract DPLL*.

- Abstract DPLL uses *states* and *transitions* to model the progress of the algorithm.
- Most states are of the form $M \parallel F$, where
 - M is a sequence of annotated literals denoting a partial truth assignment, and

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

► *F* is the CNF formula being checked, represented as a *set of clauses*.

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called *Abstract DPLL*.

- Abstract DPLL uses *states* and *transitions* to model the progress of the algorithm.
- Most states are of the form $M \parallel F$, where
 - M is a sequence of annotated literals denoting a partial truth assignment, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ *F* is the CNF formula being checked, represented as a *set of clauses*.
- The *initial state* is $\emptyset \parallel F$, where F is to be checked for satisfiability.

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called *Abstract DPLL*.

- Abstract DPLL uses *states* and *transitions* to model the progress of the algorithm.
- Most states are of the form $M \parallel F$, where
 - M is a sequence of annotated literals denoting a partial truth assignment, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- ▶ *F* is the CNF formula being checked, represented as a *set of clauses*.
- The *initial state* is $\emptyset \parallel F$, where F is to be checked for satisfiability.
- Transitions between states are defined by a set of *conditional transition rules*.

The *final state* is either:

- ▶ a special fail state: *fail*, if *F* is unsatisfiable, or
- $M \parallel G$, where G is a CNF formula equisatisfiable with the original formula F, and M satisfies G

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

We write $M \models C$ to mean that for every truth assignment v, v(M) = True implies v(C) = True.

UnitProp :

$$M \parallel F, C \lor I \implies M I \parallel F, C \lor I \quad \text{if } \begin{cases} M \models \neg C \\ I \text{ is undefined in } M \end{cases}$$

・ロト・日本・ヨト・ヨー うへの

UnitProp :

$$M \parallel F, C \lor I \implies M I \parallel F, C \lor I \quad \text{if } \begin{cases} M \models \neg C \\ I \text{ is undefined in } M \end{cases}$$
PureLiteral:

$$M \parallel F \implies M I \parallel F \qquad \text{if } \begin{cases} I \text{ occurs in some clause of } F \\ \neg I \text{ occurs in no clause of } F \\ I \text{ is undefined in } M \end{cases}$$

UnitProp :

$$M \parallel F, C \lor I \implies M I \parallel F, C \lor I \quad \text{if } \begin{cases} M \models \neg C \\ I \text{ is undefined in } M \end{cases}$$
PureLiteral:

$$M \parallel F \implies M I \parallel F \qquad \text{if } \begin{cases} I \text{ occurs in some clause of } F \\ \neg I \text{ occurs in no clause of } F \\ I \text{ is undefined in } M \end{cases}$$
Decide:

$$M \parallel F \implies M I^d \parallel F \qquad \text{if } \begin{cases} 1 \text{ or } \neg 1 \text{ occurs in a clause of } F \\ I \text{ is undefined in } M \end{cases}$$

.. . .

UnitProp :			
$M \parallel F, \ C \lor I$	\Rightarrow	$M \ I \parallel F, \ C \lor I$	if $\begin{cases} M \models \neg C \\ I \text{ is undefined in } M \end{cases}$
PureLiteral :			τ.
<i>M</i> ∥ <i>F</i>	\Rightarrow	M I F	if $\begin{cases} / \text{ occurs in some clause of } F \\ \neg / \text{ occurs in no clause of } F \\ / \text{ is undefined in } M \end{cases}$
Decide :			Ϋ́Υ,
<i>M</i> ∥ <i>F</i>	\implies	<i>M I</i> ^d <i>F</i>	if $\begin{cases} 1 \text{ or } \neg 1 \text{ occurs in a clause of } F \\ 1 \text{ is undefined in } M \end{cases}$
Backtrack :			< compared with the second sec
$M I^{d} N \parallel F, C$	\Rightarrow	$M \neg I \parallel F, C$	if $\begin{cases} M \stackrel{d}{} N \models \neg C \\ N \text{ contains no decision literals} \end{cases}$

UnitProp :			
$M \parallel F, \ C \lor I$	\Rightarrow	$M \ I \parallel F, \ C \lor I$	if $\begin{cases} M \models \neg C \\ I \text{ is undefined in } M \end{cases}$
PureLiteral :			
<i>M</i> ∥ <i>F</i>	\Rightarrow	M I F	if $\begin{cases} \ / \text{ occurs in some clause of } F \\ \neg / \text{ occurs in no clause of } F \\ / \text{ is undefined in } M \end{cases}$
Decide :			
M∥F	\Rightarrow	M I ^d ∥ F	if $\begin{cases} 1 \text{ or } \neg 1 \text{ occurs in a clause of } F \\ 1 \text{ is undefined in } M \end{cases}$
Backtrack :			< compared with the second sec
$M I^d N \parallel F, C$	\Rightarrow	$M \neg I \parallel F, C$	if $\begin{cases} M I^{d} N \models \neg C \\ N \text{ contains no decision literals} \end{cases}$
Fail :			< compared with the second sec
<i>M</i> ∥ <i>F</i> , <i>C</i>	\Rightarrow	fail	$\mathbf{if} \left\{ \begin{array}{l} M \models \neg C \\ M \text{ contains no decision literals} \end{array} \right.$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

 $\emptyset \hspace{0.1 in} \| \hspace{0.1 in} 1 \hspace{-0.5 ex} 1 \hspace{-0.5 ex} \overline{2}, \hspace{0.1 in} \overline{1} \hspace{-0.5 ex} \overline{2}, \hspace{0.1 in} 2 \hspace{-0.5 ex} \overline{3} \hspace{-0.5 ex} \overline{2}, \hspace{0.1 in} 1 \hspace{-0.5 ex} \overline{4}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Ø	$1 \vee \overline{2},$	$\overline{1}\vee\overline{2},$	2∨3,	3∨2,	$1\!\vee\!4$	\implies	(PureLiteral)
4	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(Decide)
41 ^d	$1 \vee \overline{2}$,	$\overline{1} \lor \overline{2},$	2∨3,	$\overline{3}\lor 2,$	$1 \lor 4$		

Øl	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(PureLiteral)
4	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(Decide)
4 1 ^d ∥	$1 \vee \overline{2}$,	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2 ∥	$1 \lor \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	$\overline{3} \lor 2,$	$1 \lor 4$		

Øl	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(PureLiteral)
4	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(Decide)
4 1 ^d	$1 \vee \overline{2}$,	$\overline{1} \lor \overline{2},$	2∨3,	$\overline{3}\lor 2,$	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	2∨3,	3∨2,	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2̄ 3 ∥	$1 \lor \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3 ,	3 ∨2,	$1 \lor 4$		

Ø	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(PureLiteral)
4	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	$\overline{3}\lor 2,$	$1 \lor 4$	\implies	(Decide)
4 1 ^d	$1 \vee \overline{2}$,	$\overline{1} \lor \overline{2},$	2∨3,	$\overline{3}\lor 2,$	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	2∨3,	<u></u> 3∨2,	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2 3	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	2∨3,	<u></u> 3∨2,	1∨4	\implies	(Backtrack)
4 1	$1 \lor \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	$\overline{3}$ \lor 2,	$1 \lor 4$		

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Øl	$1 \lor \overline{2}, \overline{1}$	$\overline{I} \lor \overline{2}, 2 \lor 3,$	3∨2,	$1\!\vee\!4$	\implies	(PureLiteral)
4	$1 \lor \overline{2}, \overline{1}$	$\overline{I} \lor \overline{2}, 2 \lor 3,$	3∨2,	1∨4	\implies	(Decide)
4 1 ^d ∥	$1 \vee \overline{2}, \overline{1}$	$\overline{I} \lor \overline{2}, 2 \lor 3,$	3∨2,	1∨4	\implies	(UnitProp)
4 1 ^d 2 ∥	$1 \lor \overline{2}, \overline{1}$	Ī∨ <mark>2</mark> , 2∨3,	3∨2,	1∨4	\implies	(UnitProp)
4 1 ^d 2̄ 3 ∥	$1 \lor \overline{2}, \overline{1}$	$\overline{I} \vee \overline{2}, 2 \vee 3,$	<u></u> 3∨2,	1∨4	\implies	(Backtrack)
4 1	$1 \vee \overline{2}, \overline{1}$	Ī∨ <mark>2</mark> , 2∨3,	3∨2,	1∨4	\implies	(UnitProp)
4 1 2 3	$1 \vee \overline{2}, \overline{1}$	ī∨ <mark>2</mark> , 2∨3,	3 ∨2,	1∨4		

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Ø	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3,	<u>3</u> ∨2,	$1 \lor 4$	\implies	(PureLiteral)
4	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3,	3∨2,	1∨4	\implies	(Decide)
4 1 ^d ∥	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3,	3∨2,	1∨4	\implies	(UnitProp)
4 1 ^d 2 ∥	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3,	3∨2,	1∨4	\implies	(UnitProp)
4 1 ^d 2̄ 3 ∥	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3 ,	3 ∨2,	1∨4	\implies	(Backtrack)
4 1	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3,	3∨2,	1∨4	\implies	(UnitProp)
4 1 2 3	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3,	3 ∨2,	1∨4	\implies	(Fail)
fail						

Øl	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3,	$\overline{3}$ \lor 2, 1 \lor 4	\implies	(PureLiteral)
4	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3,	$\overline{3}$ \vee 2, 1 \vee 4	\implies	(Decide)
4 1 ^d ∥	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3,	$\overline{3}$ \vee 2, 1 \vee 4	\implies	(UnitProp)
4 1 ^d 2 ∥	$1 \vee \overline{2}, \ \overline{1} \vee \overline{2},$	2∨3,	$\overline{3}$ \vee 2, 1 \vee 4	\implies	(UnitProp)
4 1 ^d 2̄ 3 ∥	$1 \vee \overline{2}, \ \overline{1} \vee \overline{2},$	2∨3 ,	$\overline{3}$ \vee 2, 1 \vee 4	\implies	(Backtrack)
41	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3,	$\overline{3}$ \vee 2, 1 \vee 4	\implies	(UnitProp)
4 1 2 3	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3,	$\overline{3}$ \vee 2, 1 \vee 4	\implies	(Fail)
fail					

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Result: Unsatisfiable

Abstract DPLL: Backjumping and Learning

The basic rules can be improved by replacing the Backtrack rule with the more powerful Backjump rule and adding a Learn rule:

Backjump :

$$M \mid I' \mid F, C \implies M \mid I' \mid F, C \quad \text{if} \begin{cases} M \mid I' \mid F \mid C, \text{ and there is} \\ \text{some clause } C' \lor I' \text{ such that} : \\ F, C \models C' \lor I' \text{ and } M \models \neg C', \\ I' \text{ is undefined in } M, \text{ and} \\ 1' \text{ or } \neg I' \text{ occurs in } F \text{ or in } M \mid d \end{pmatrix}$$
Learn :
$$M \mid F = C \qquad \text{if} \quad \left\{ \begin{array}{c} \text{all atoms of } C \text{ occur in } F \\ \text{all atoms of } C \text{ occur in } F \end{array} \right.$$

(Maid ALL C 141 .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

$$M \parallel F \qquad \implies M \parallel F, C \qquad \text{if } \begin{cases} \text{all atoms of } C \text{ occur in } F \\ F \models C \end{cases}$$

Abstract DPLL: Backjumping and Learning

The Backjump rule is best understood by introducing the notion of *implication graph*, a directed graph associated with a state $M \parallel F$ of Abstract DPLL:

- The vertices are the variables in M
- ▶ There is an edge from v_1 to v_2 if v_2 was assigned a value as the result of an application of UnitProp using a clause containing v_2 .

When we reach a state in which $M \models \neg C$ for some $C \in F$, we add an extra *conflict* vertex and edges from each of the variables in C to the conflict vertex.

Abstract DPLL: Backjumping and Learning

The clause to use for backjumping (called the *conflict clause*) is obtained from the resulting graph:

- We first cut the graph along edges in such a way that it separates the conflict vertex from all of the decision vertices.
- ▶ Then, every vertex with an outgoing edge that was cut is marked.
- ▶ For each literal / in *M* whose variable is marked, −/ is added to the conflict clause.

To avoid ever having the same conflict again, we can learn the conflict clause using the *learn* rule.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●