CS 357: Advanced Topics in Formal Methods Fall 2019

Lecture 4

Aleksandar Zeljić
(materials by Clark Barrett)
Stanford University

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called Abstract DPLL.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called Abstract DPLL.

- Abstract DPLL uses states and transitions to model the progress of the algorithm.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called Abstract DPLL.

- Abstract DPLL uses states and transitions to model the progress of the algorithm.
- Most states are of the form $M \| F$, where
- M is a sequence of annotated literals denoting a partial truth assignment, and
- F is the CNF formula being checked, represented as a set of clauses.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called Abstract DPLL.

- Abstract DPLL uses states and transitions to model the progress of the algorithm.
- Most states are of the form $M \| F$, where
- M is a sequence of annotated literals denoting a partial truth assignment, and
- F is the CNF formula being checked, represented as a set of clauses.
- The initial state is $\emptyset \| F$, where F is to be checked for satisfiability.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called Abstract DPLL.

- Abstract DPLL uses states and transitions to model the progress of the algorithm.
- Most states are of the form $M \| F$, where
- M is a sequence of annotated literals denoting a partial truth assignment, and
- F is the CNF formula being checked, represented as a set of clauses.
- The initial state is $\emptyset \| F$, where F is to be checked for satisfiability.
- Transitions between states are defined by a set of conditional transition rules.

Abstract DPLL

The final state is either:

- a special fail state: fail, if F is unsatisfiable, or
- $M \| G$, where G is a CNF formula equisatisfiable with the original formula F, and M satisfies G

We write $M \models C$ to mean that for every truth assignment $v, v(M)=$ True implies $v(C)=$ True.

Abstract DPLL Rules

UnitProp :

$$
M\|F, C \vee I \quad \Longrightarrow \quad M I\| F, C \vee I \quad \text { if }\left\{\begin{array}{l}
M \mid=\neg C \\
I \text { is undefined in } M
\end{array}\right.
$$

Abstract DPLL Rules

UnitProp :

$$
M\|F, C \vee I \quad \Longrightarrow \quad M I\| F, C \vee I \quad \text { if }\left\{\begin{array}{l}
M \mid=\neg C \\
I \text { is undefined in } M
\end{array}\right.
$$

PureLiteral :

$$
M\|F \quad \Longrightarrow \quad M I\| F
$$

Abstract DPLL Rules

UnitProp :

$$
M\|F, C \vee I \quad \Longrightarrow \quad M I\| F, C \vee I \quad \text { if }\left\{\begin{array}{l}
M \mid=\neg C \\
I \text { is undefined in } M
\end{array}\right.
$$

PureLiteral :

$$
M\|F \quad \Longrightarrow \quad M I\| F
$$

Decide :

$$
M\left\|F \quad \Longrightarrow \quad M I^{\mathrm{d}}\right\| F
$$

if $\left\{\begin{array}{l}l \text { occurs in some clause of } F \\ \neg / \text { occurs in no clause of } F \\ I \text { is undefined in } M\end{array}\right.$
if $\left\{\begin{array}{l}1 \text { or } \neg l \text { occurs in a clause of } F \\ 1 \text { is undefined in } M\end{array}\right.$

Abstract DPLL Rules

UnitProp :

$$
M\|F, C \vee I \quad \Longrightarrow \quad M I\| F, C \vee I \quad \text { if }\left\{\begin{array}{l}
M \mid=\neg C \\
I \text { is undefined in } M
\end{array}\right.
$$

PureLiteral :

$$
M\|F \quad \Longrightarrow \quad M I\| F
$$

Decide :

$$
\text { if }\left\{\begin{array}{l}
I \text { occurs in some clause of } F \\
\neg / \text { occurs in no clause of } F \\
I \text { is undefined in } M
\end{array}\right.
$$

$$
M\left\|F \quad \Longrightarrow \quad M I^{\mathrm{d}}\right\| F
$$

if $\left\{\begin{array}{l}1 \text { or } \neg l \text { occurs in a clause of } F \\ 1 \text { is undefined in } M\end{array}\right.$
Backtrack:

$$
M I^{\mathrm{d}} N\|F, C \quad \Longrightarrow \quad M \neg /\| F, C \quad \text { if } \quad\left\{\begin{array}{l}
M I^{\mathrm{d}} N \models \neg C \\
N \text { contains no decision literals }
\end{array}\right.
$$

Abstract DPLL Rules

UnitProp :

$$
M\|F, C \vee I \quad \Longrightarrow \quad M I\| F, C \vee I \quad \text { if }\left\{\begin{array}{l}
M \mid=\neg C \\
I \text { is undefined in } M
\end{array}\right.
$$

PureLiteral :

$$
M\|F \quad \Longrightarrow \quad M I\| F
$$

if $\left\{\begin{array}{l}I \text { occurs in some clause of } F \\ \neg / \text { occurs in no clause of } F \\ I \text { is undefined in } M\end{array}\right.$
Decide :

$$
M\left\|F \quad \Longrightarrow \quad M I^{\mathrm{d}}\right\| F
$$

if $\left\{\begin{array}{l}1 \text { or } \neg l \text { occurs in a clause of } F \\ 1 \text { is undefined in } M\end{array}\right.$
Backtrack:

$$
M I^{\mathrm{d}} N\|F, C \quad \Longrightarrow \quad M \neg /\| F, C \quad \text { if } \quad\left\{\begin{array}{l}
M I^{\mathrm{d}} N \models \neg C \\
N \text { contains no decision literals }
\end{array}\right.
$$

Fail :

$$
M \| F, C \quad \Longrightarrow \quad \text { fail }
$$

if $\left\{\begin{array}{l}M \neq \neg C \\ M \text { contains no decision literals }\end{array}\right.$

Example

$\emptyset \| \quad 1 \vee \overline{2}, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{3} \vee 2,1 \vee 4$

Example

$$
\begin{array}{llllll}
\emptyset \| & 1 \vee \overline{2}, & \overline{1} \vee \overline{2}, & 2 \vee 3, & \overline{3} \vee 2, & 1 \vee 4 \\
4 \| & 1 \vee \overline{2}, & \overline{1} \vee \overline{2}, & 2 \vee 3, & \overline{3} \vee 2, & 1 \vee 4
\end{array} \quad \Longrightarrow \quad \text { (PureLiteral) }
$$

Example

Example

\emptyset	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Longrightarrow	(PureLiteral)
4	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Longrightarrow	(Decide)
$41^{\text {d }}$	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Longrightarrow	(UnitProp)
$41^{\text {d }} \overline{2}$	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$		

Example

\emptyset	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\rightarrow	(PureLiteral)
4	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Longrightarrow	(Decide)
$41^{\text {d }}$	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\rightarrow	(UnitProp)
$41^{\text {d }} \overline{2}$	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Longrightarrow	(UnitProp)
$41^{\text {d }} \overline{2} 3$	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$		

Example

\emptyset	$1 \vee \overline{2}$	$\bar{\square} \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Longrightarrow	(PureLiteral)
4	$1 \vee 2$	$\bar{\square} \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Longrightarrow	(Decide)
$41^{\text {d }}$	$1 \vee \overline{2}$	$\bar{\top} \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\longrightarrow	(UnitProp)
$41^{\text {d }} \overline{2}$	$1 \vee 2$	$\bar{\vee} \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Longrightarrow	(UnitProp)
$41^{\text {d }} \overline{2} 3$	$1 \vee 2$	$\checkmark \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Rightarrow	(Backtrack)
$4 \overline{1}$	$1 \vee 2$	$\checkmark \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$		

Example

\emptyset	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Longrightarrow	(PureLiteral)
4	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Longrightarrow	(Decide)
$41^{\text {d }}$	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\rightarrow	(UnitProp)
$41^{\text {d }} \overline{2}$	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Longrightarrow	(UnitProp)
$41^{\text {d }} \overline{2} 3$	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\rightarrow	(Backtrack)
$4 \overline{1}$	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$	\Longrightarrow	(UnitProp)
$4 \overline{1} \overline{2} \overline{3}$	$1 \vee \overline{2}$,	$\overline{1} \vee \overline{2}$,	$2 \vee 3$,	$\overline{3} \vee 2$,	$1 \vee 4$		

Example

Example

Result: Unsatisfiable

Abstract DPLL: Backjumping and Learning

The basic rules can be improved by replacing the Backtrack rule with the more powerful Backjump rule and adding a Learn rule:

Backjump :

$$
M I^{d} N\left\|F, C \quad \Longrightarrow \quad M I^{\prime}\right\| F, C \quad \text { if }\left\{\begin{array}{l}
M I^{d} N \models \neg C, \text { and there is } \\
\text { some clause } C^{\prime} \vee I^{\prime} \text { such that : } \\
F, C \models C^{\prime} \vee I^{\prime} \text { and } M \models \neg C^{\prime}, \\
I^{\prime} \text { is undefined in } M, \text { and } M I^{\mathrm{d}} N \\
I^{\prime} \text { or } \neg l^{\prime} \text { occurs in } F \text { or in } M I^{d}
\end{array}\right.
$$

Learn :

$$
M\|F \quad \Longrightarrow \quad M\| F, C \quad \text { if }\left\{\begin{array}{l}
\text { all atoms of } C \text { occur in } F \\
F \models C
\end{array}\right.
$$

Abstract DPLL: Backjumping and Learning

The Backjump rule is best understood by introducing the notion of implication graph, a directed graph associated with a state $M \| F$ of Abstract DPLL:

- The vertices are the variables in M
- There is an edge from v_{1} to v_{2} if v_{2} was assigned a value as the result of an application of UnitProp using a clause containing v_{2}.

When we reach a state in which $M \vDash \neg C$ for some $C \in F$, we add an extra conflict vertex and edges from each of the variables in C to the conflict vertex.

Abstract DPLL: Backjumping and Learning

The clause to use for backjumping (called the conflict clause) is obtained from the resulting graph:

- We first cut the graph along edges in such a way that it separates the conflict vertex from all of the decision vertices.
- Then, every vertex with an outgoing edge that was cut is marked.
- For each literal / in M whose variable is marked, $-/$ is added to the conflict clause.

To avoid ever having the same conflict again, we can learn the conflict clause using the learn rule.

