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Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a
high-level framework called Abstract DPLL.

I Abstract DPLL uses states and transitions to model the progress of the
algorithm.

I Most states are of the form M || F , where
I M is a sequence of annotated literals denoting a partial truth assignment,

and
I F is the CNF formula being checked, represented as a set of clauses.

I The initial state is ∅ || F , where F is to be checked for satisfiability.

I Transitions between states are defined by a set of conditional transition
rules.
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Abstract DPLL

The final state is either:

I a special fail state: fail , if F is unsatisfiable, or

I M || G , where G is a CNF formula equisatisfiable with the original formula
F , and M satisfies G

We write M |= C to mean that for every truth assignment v , v(M) = True
implies v(C) = True.



Abstract DPLL Rules

UnitProp :

M || F , C ∨ l =⇒ M l || F , C ∨ l if

{
M |= ¬C
l is undefined in M

PureLiteral :

M || F =⇒ M l || F if


l occurs in some clause of F
¬l occurs in no clause of F
l is undefined in M

Decide :

M || F =⇒ M ld || F if

{
l or ¬l occurs in a clause of F
l is undefined in M

Backtrack :

M ld N || F , C =⇒ M ¬l || F , C if

{
M ld N |= ¬C
N contains no decision literals

Fail :

M || F , C =⇒ fail if

{
M |= ¬C
M contains no decision literals
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

=⇒ (PureLiteral)
4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)
4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)
4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)
fail

Result: Unsatisfiable
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Abstract DPLL: Backjumping and Learning

The basic rules can be improved by replacing the Backtrack rule with the more
powerful Backjump rule and adding a Learn rule:

Backjump :

M ld N || F , C =⇒ M l ′ || F , C if


M ld N |= ¬C , and there is
some clause C ′ ∨ l ′ such that :
F ,C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M, and

l′ or ¬l′ occurs in F or in M ld N
Learn :

M || F =⇒ M || F , C if

{
all atoms of C occur in F
F |= C



Abstract DPLL: Backjumping and Learning

The Backjump rule is best understood by introducing the notion of implication
graph, a directed graph associated with a state M || F of Abstract DPLL:

I The vertices are the variables in M

I There is an edge from v1 to v2 if v2 was assigned a value as the result of
an application of UnitProp using a clause containing v2.

When we reach a state in which M |= ¬C for some C ∈ F , we add an extra
conflict vertex and edges from each of the variables in C to the conflict vertex.



Abstract DPLL: Backjumping and Learning

The clause to use for backjumping (called the conflict clause) is obtained from
the resulting graph:

I We first cut the graph along edges in such a way that it separates the
conflict vertex from all of the decision vertices.

I Then, every vertex with an outgoing edge that was cut is marked.

I For each literal l in M whose variable is marked, −l is added to the
conflict clause.

To avoid ever having the same conflict again, we can learn the conflict clause
using the learn rule.


