CS 357: Advanced Topics in Formal Methods Fall 2019

Lecture 4

Aleksandar Zeljić (materials by Clark Barrett) Stanford University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called *Abstract DPLL*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called *Abstract DPLL*.

Abstract DPLL uses *states* and *transitions* to model the progress of the algorithm.

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called *Abstract DPLL*.

- Abstract DPLL uses *states* and *transitions* to model the progress of the algorithm.
- Most states are of the form $M \parallel F$, where
 - M is a sequence of annotated literals denoting a partial truth assignment, and

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

► *F* is the CNF formula being checked, represented as a *set of clauses*.

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called *Abstract DPLL*.

- Abstract DPLL uses *states* and *transitions* to model the progress of the algorithm.
- Most states are of the form $M \parallel F$, where
 - M is a sequence of annotated literals denoting a partial truth assignment, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ *F* is the CNF formula being checked, represented as a *set of clauses*.
- The *initial state* is $\emptyset \parallel F$, where F is to be checked for satisfiability.

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called *Abstract DPLL*.

- Abstract DPLL uses *states* and *transitions* to model the progress of the algorithm.
- Most states are of the form $M \parallel F$, where
 - M is a sequence of annotated literals denoting a partial truth assignment, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- ▶ *F* is the CNF formula being checked, represented as a *set of clauses*.
- The *initial state* is $\emptyset \parallel F$, where F is to be checked for satisfiability.
- Transitions between states are defined by a set of *conditional transition rules*.

The *final state* is either:

- ▶ a special fail state: *fail*, if *F* is unsatisfiable, or
- $M \parallel G$, where G is a CNF formula equisatisfiable with the original formula F, and M satisfies G

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

We write $M \models C$ to mean that for every truth assignment v, v(M) = True implies v(C) = True.

UnitProp :

$$M \parallel F, C \lor I \implies M I \parallel F, C \lor I \quad \text{if } \begin{cases} M \models \neg C \\ I \text{ is undefined in } M \end{cases}$$

UnitProp :

$$M \parallel F, C \lor I \implies M I \parallel F, C \lor I \quad \text{if } \begin{cases} M \models \neg C \\ I \text{ is undefined in } M \end{cases}$$
PureLiteral:

$$M \parallel F \implies M I \parallel F \qquad \text{if } \begin{cases} I \text{ occurs in some clause of } F \\ \neg I \text{ occurs in no clause of } F \\ I \text{ is undefined in } M \end{cases}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

UnitProp :

$$M \parallel F, C \lor I \implies M I \parallel F, C \lor I \quad \text{if } \begin{cases} M \models \neg C \\ I \text{ is undefined in } M \end{cases}$$
PureLiteral:

$$M \parallel F \implies M I \parallel F \qquad \text{if } \begin{cases} I \text{ occurs in some clause of } F \\ \neg I \text{ occurs in no clause of } F \\ I \text{ is undefined in } M \end{cases}$$
Decide:

$$M \parallel F \implies M I^{d} \parallel F \qquad \text{if } \begin{cases} 1 \text{ or } \neg 1 \text{ occurs in a clause of } F \\ I \text{ is undefined in } M \end{cases}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

.. . .

UnitProp :			
$M \parallel F, \ C \lor I$	\implies	$M \ I \parallel F, \ C \lor I$	$\mathbf{if} \begin{cases} M \models \neg C \\ \text{is undefined in } M \end{cases}$
PureLiteral :			
<i>M</i> ∥ <i>F</i>	\Rightarrow	M I F	if $\begin{cases} \ / \text{ occurs in some clause of } F \\ \neg / \text{ occurs in no clause of } F \\ / \text{ is undefined in } M \end{cases}$
Decide :			
M∥F	\Rightarrow	$M I^d \parallel F$	$ \mathbf{if} \begin{cases} 1 \text{ or } \neg 1 \text{ occurs in a clause of } F \\ 1 \text{ is undefined in } M \end{cases} $
Backtrack :			•
$M \ I^d \ N \parallel F, \ C$	\Rightarrow	$M \neg I \parallel F, C$	$ \mathbf{if} \ \left\{ \begin{array}{l} M \ I^d \ N \models \neg C \\ N \ \mathrm{contains \ no \ decision \ literals} \end{array} \right. $

UnitProp :			
$M \parallel F, \ C \lor I$	\Rightarrow	$M \ I \parallel F, \ C \lor I$	$\mathbf{if} \begin{cases} M \models \neg C \\ I \text{ is undefined in } M \end{cases}$
PureLiteral :			ζ.
<i>M</i> ∥ <i>F</i>	\Rightarrow	M I F	if $\begin{cases} \ / \text{ occurs in some clause of } F \\ \neg / \text{ occurs in no clause of } F \\ / \text{ is undefined in } M \end{cases}$
Decide :			
<i>M</i> ∥ <i>F</i>	\implies	$M I^d \parallel F$	if $\begin{cases} 1 \text{ or } \neg 1 \text{ occurs in a clause of } F \\ 1 \text{ is undefined in } M \end{cases}$
Backtrack :			< compared with the second sec
$M I^{d} N \parallel F, C$	\Rightarrow	$M \neg I \parallel F, C$	if $\begin{cases} M I^{d} N \models \neg C \\ N \text{ contains no decision literals} \end{cases}$
Fail :			
<i>M</i> ∥ <i>F</i> , <i>C</i>	\Rightarrow	fail	$\mathbf{if} \left\{ \begin{array}{l} M \models \neg C \\ M \text{ contains no decision literals} \end{array} \right.$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

 $\emptyset \hspace{0.1 in} \| \hspace{0.1 in} 1 \hspace{-0.5 ex} 1 \hspace{-0.5 ex} \overline{2}, \hspace{0.1 in} \overline{1} \hspace{-0.5 ex} \overline{2}, \hspace{0.1 in} 2 \hspace{-0.5 ex} \overline{3} \hspace{-0.5 ex} \overline{2}, \hspace{0.1 in} 1 \hspace{-0.5 ex} \overline{4}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Øl	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1\!\vee\!4$	\implies	(PureLiteral)
4	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	1∨4	\implies	(Decide)
41 ^d	$1 \vee \overline{2}$,	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	1∨4		

Øl	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	$\overline{3}\lor 2,$	$1 \lor 4$	\implies	(PureLiteral)
4	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(Decide)
4 1 ^d ∥	$1 \vee \overline{2}$,	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2 ∥	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	$\overline{3}\lor 2,$	$1 \lor 4$		

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Ø∥	$1 \lor \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	$\overline{3}\lor 2,$	$1\!\vee\!4$	\implies	(PureLiteral)
4	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(Decide)
4 1 ^d	$1 \vee \overline{2}$,	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2	$1 \vee \overline{2}$,	$\overline{1} \lor \overline{2}$,	2∨3,	3∨2,	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2 3	$1 \lor \overline{2},$	$\overline{1} \vee \overline{2},$	2∨3,	3 ∨2,	$1 \lor 4$		

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Ø∥	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	$\overline{3}\lor 2,$	$1\!\vee\!4$	\implies	(PureLiteral)
4	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	1∨4	\implies	(Decide)
4 1 ^d ∥	$1 \vee \overline{2}$,	$\overline{1} \lor \overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2	$1 \vee \overline{2}$,	$\overline{1}\vee\overline{2},$	2∨3,	3∨2,	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2 3	$1 \vee \overline{2}$,	$\overline{1} \lor \overline{2}$,	2∨3,	<u></u> 3∨2,	$1 \lor 4$	\implies	(Backtrack)
4 1	$1 \vee \overline{2},$	$\overline{1} \lor \overline{2},$	2∨3,	$\overline{3} \lor 2,$	$1 \lor 4$		

(ロ)、(型)、(E)、(E)、 E) の(()

Øl	$1 \lor \overline{2}, \overline{1} \lor \overline{2}$, $2\vee 3$, $\overline{3}\vee 2$,	$1\!\vee\!4$	\implies	(PureLiteral)
4	$1 \vee \overline{2}, \ \overline{1} \vee \overline{2}$	$$, 2 \vee 3, $\overline{3}$ \vee 2,	$1 \lor 4$	\implies	(Decide)
4 1 ^d ∥	$1 \vee \overline{2}, \overline{1} \vee \overline{2}$	$$, 2 \vee 3, $\overline{3}$ \vee 2,	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2	$1 \vee \overline{2}, \ \overline{1} \vee \overline{2}$	$$, $2\vee 3$, $\overline{3}\vee 2$,	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2 3	$1 \vee \overline{2}, \ \overline{1} \vee \overline{2}$, 2∨3, <u>3</u> ∨2,	$1 \lor 4$	\implies	(Backtrack)
4 1	$1 \vee \overline{2}, \ \overline{1} \vee \overline{2}$	$\overline{,} 2 \vee 3, \overline{3} \vee 2,$	$1 \lor 4$	\implies	(UnitProp)
4 1 2 3	$1 \vee \overline{2}, \ \overline{1} \vee \overline{2}$, 2∨3, <u>3</u> ∨2,	$1 \lor 4$		

(ロ)、(型)、(E)、(E)、 E) の(()

Ø	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	$2\vee 3, \overline{3}\vee 2,$	$1 \lor 4$	\implies	(PureLiteral)
4	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	$2\vee 3, \overline{3}\vee 2,$	$1 \lor 4$	\implies	(Decide)
4 1 ^d	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	$2\vee 3, \overline{3}\vee 2,$	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	$2\vee 3, \overline{3}\vee 2,$	$1 \lor 4$	\implies	(UnitProp)
4 1 ^d 2̄ 3 ∥	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3, <u>3</u> ∨2,	$1 \lor 4$	\implies	(Backtrack)
4 1	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	$2\vee 3, \overline{3}\vee 2,$	$1 \lor 4$	\implies	(UnitProp)
4 1 2 3	$1 \vee \overline{2}, \overline{1} \vee \overline{2},$	2∨3, <u>3</u> ∨2,	$1 \lor 4$	\implies	(Fail)
fail					

Ø	$1 \lor \overline{2}, \overline{1} \lor \overline{2}, 2 \lor 3, \overline{3} \lor 2, 1 \lor 4$	\implies	(PureLiteral)
4	$1 \vee \overline{2}, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{3} \vee 2, 1 \vee 4$	\implies	(Decide)
4 1 ^d ∥	$1 \vee \overline{2}, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{3} \vee 2, 1 \vee 4$	\implies	(UnitProp)
4 1 ^d 2 ∥	$1\sqrt{2}, \overline{1}\sqrt{2}, 2\sqrt{3}, \overline{3}\sqrt{2}, 1\sqrt{4}$	\implies	(UnitProp)
4 1 ^d 2̄ 3 ∥	$1 \lor \overline{2}, \overline{1} \lor \overline{2}, 2 \lor 3, \overline{3} \lor 2, 1 \lor 4$	\implies	(Backtrack)
4 1	$1 \vee \overline{2}, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{3} \vee 2, 1 \vee 4$	\implies	(UnitProp)
4 1 2 3	$1 \lor \overline{2}, \overline{1} \lor \overline{2}, 2 \lor 3, \overline{3} \lor 2, 1 \lor 4$	\implies	(Fail)
fail			

(ロ)、(型)、(E)、(E)、 E) の(()

Result: Unsatisfiable

Abstract DPLL: Backjumping and Learning

The basic rules can be improved by replacing the Backtrack rule with the more powerful Backjump rule and adding a Learn rule:

Learn :

$$M \parallel F \implies M \parallel F, C \quad \text{if } \begin{cases} \text{ all atoms of } C \text{ occur in } F \\ F \models C \end{cases}$$

Backjump :
$$M \mid^{d} \mid N \parallel F, C \implies M \mid' \parallel F, C \quad \text{if } \begin{cases} M \mid^{d} \mid N \models \neg C, \text{ and there is some clause } C' \lor l' \text{ such that :} \\ F, C \models C' \lor l' \text{ and } M \models \neg C', \\ l' \text{ is undefined in } M, \text{ and} \\ l' \text{ or } \neg l' \text{ occurs in } F \text{ or in } M \mid^{d} N \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Abstract DPLL: Backjumping and Learning

The Backjump rule is best understood by introducing the notion of *implication graph*, a directed graph associated with a state $M \parallel F$ of Abstract DPLL:

- The vertices are the variables in M
- ▶ There is an edge from v_1 to v_2 if v_2 was assigned a value as the result of an application of UnitProp using a clause containing v_2 .

When we reach a state in which $M \models \neg C$ for some $C \in F$, we add an extra *conflict* vertex and edges from each of the variables in C to the conflict vertex.

Abstract DPLL: Backjumping and Learning

The clause to use for backjumping (called the *conflict clause*) is obtained from the resulting graph:

- We first cut the graph along edges in such a way that it separates the conflict vertex from all of the decision vertices.
- ▶ Then, every vertex with an outgoing edge that was cut is marked.
- ▶ For each literal / in *M* whose variable is marked, −/ is added to the conflict clause.

To avoid ever having the same conflict again, we can learn the conflict clause using the *learn* rule.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\emptyset \hspace{0.1 in} \| \hspace{0.1 in} \overline{1} \lor 2, \hspace{0.1 in} 3 \lor 4, \hspace{0.1 in} \overline{5} \lor \overline{6}, \hspace{0.1 in} \overline{2} \lor \overline{5} \lor 6$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Ø	$\overline{1} \lor 2,$	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$	\implies	(Decide)
1 ^d	$\overline{1} \lor 2,$	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$	\implies	(UnitProp)
1 ^d 2	$\overline{1} \lor 2$,	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$	\implies	(Decide)
1 ^d 2 3 ^d	$\overline{1} \lor 2$,	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$	\implies	(Decide)
$1^{d} 2 3^{d} 5^{d} \parallel$	$\overline{1} \lor 2,$	3∨4,	$\overline{5}\!\vee\!\overline{6},$	$\overline{2} \lor \overline{5} \lor 6$		

Ø	$\overline{1} \lor 2,$	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$	\implies	(Decide)
1 ^d	$\overline{1} \lor 2,$	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$	\implies	(UnitProp)
1 ^d 2	$\overline{1} \lor 2$,	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$	\implies	(Decide)
1 ^d 2 3 ^d	$\overline{1} \lor 2$,	3∨4,	$\overline{5} \lor \overline{6}$,	$\overline{2} \lor \overline{5} \lor 6$	\implies	(Decide)
1 ^d 2 3 ^d 5 ^d	$\overline{1} \lor 2$,	3∨4,	$\overline{5} \lor \overline{6}$,	$\overline{2} \lor \overline{5} \lor 6$	\implies	(UnitProp)
1 ^d 2 3 ^d 5 ^d 6	$\overline{1}\vee 2$,	3∨4,	$\overline{5}\vee\overline{6},$	$\overline{2} \lor \overline{5} \lor 6$		

(ロ)、(型)、(E)、(E)、 E) の(()

Ø	$\overline{1} \lor 2$,	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$	\implies	(Decide)
1 ^d	$\overline{1} \lor 2$,	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$	\implies	(UnitProp)
1 ^d 2	1 ∨2,	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$	\implies	(Decide)
1 ^d 2 3 ^d	1 ∨2,	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$	\implies	(Decide)
1 ^d 2 3 ^d 5 ^d	1 ∨2,	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$	\implies	(UnitProp)
1 ^d 2 3 ^d 5 ^d 6	1 ∨2,	3∨4,	$\overline{5} \vee \overline{6}$,	$\overline{2} \lor \overline{5} \lor 6$	\implies	(Learn)
1^{d} 2 3^{d} 5^{d} $\overline{6}$	$\overline{1}\lor 2,$	3∨4,	$\overline{5} \lor \overline{6},$	$\overline{2} \lor \overline{5} \lor 6$,	$\overline{2} \lor \overline{5}$	

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 $\overline{1}\lor 2$, $3\lor 4$, $\overline{5}\lor \overline{6}$, $\overline{2}\lor \overline{5}\lor 6$ \Longrightarrow Ø (Decide) 1^{d} $\overline{1}\lor 2$, $3\lor 4$, $\overline{5}\lor \overline{6}$, $\overline{2}\lor \overline{5}\lor 6$ \Longrightarrow (UnitProp) 1^d 2 $\overline{1}\vee 2$, $3\vee 4$, $\overline{5}\vee \overline{6}$, $\overline{2}\vee \overline{5}\vee 6$ \Longrightarrow (Decide) 1^d 2 3^d 1^d 2 3^d 5^d \implies 1^d 2 3^d 5^d 6 $\overline{1} \vee 2$, $3 \vee 4$, $\overline{5} \vee \overline{6}$, $\overline{2} \vee \overline{5} \vee 6$ (Learn) $1^{d} 2 3^{d} 5^{d} \overline{6}$ $\overline{1} \lor 2$, $3 \lor 4$, $\overline{5} \lor \overline{6}$, $\overline{2} \lor \overline{5} \lor 6$, $\overline{2} \lor \overline{5}$ \implies (Backjump) 1^d 2 5 $\overline{1}\lor 2$, $3\lor 4$, $\overline{5}\lor \overline{6}$, $\overline{2}\lor \overline{5}\lor 6$, $\overline{2}\lor \overline{5}$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

 $\overline{1}\lor 2$, $3\lor 4$, $\overline{5}\lor \overline{6}$, $\overline{2}\lor \overline{5}\lor 6$ \Longrightarrow Ø 1^{d} $\overline{1} \lor 2, \ 3 \lor 4, \ \overline{5} \lor \overline{6}, \ \overline{2} \lor \overline{5} \lor 6 \qquad \Longrightarrow \qquad$ 1^d 2 $\overline{1}\vee 2$, $3\vee 4$, $\overline{5}\vee \overline{6}$, $\overline{2}\vee \overline{5}\vee 6$ \Longrightarrow 1^d 2 3^d 1^d 2 3^d 5^d 1^d 2 3^d 5^d 6 $\overline{1} \vee 2$, $3 \vee 4$, $\overline{5} \vee \overline{6}$, $\overline{2} \vee \overline{5} \vee 6$ \implies 1^d 2 3^d 5^d 6 $\overline{1} \lor 2$, $3 \lor 4$, $\overline{5} \lor \overline{6}$, $\overline{2} \lor \overline{5} \lor 6$, $\overline{2} \lor \overline{5}$ \implies (Backjump) 1^d 2 5 $\overline{1} \lor 2$, $3 \lor 4$, $\overline{5} \lor \overline{6}$, $\overline{2} \lor \overline{5} \lor 6$, $\overline{2} \lor \overline{5}$ \implies (Decide) 1^d 2 5 3^d $\overline{1}\lor 2$, $3\lor 4$, $\overline{5}\lor \overline{6}$, $\overline{2}\lor \overline{5}\lor 6$, $\overline{2}\lor \overline{5}$

(Decide) (UnitProp) (Decide) (Learn)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

Ø	$\overline{1}\lor 2, 3\lor 4, \overline{5}\lor \overline{6}, \overline{2}\lor \overline{5}\lor 6 \implies$	
1 ^d	$\overline{1}\lor 2, 3\lor 4, \overline{5}\lor \overline{6}, \overline{2}\lor \overline{5}\lor 6 \implies$	
1 ^d 2	$\overline{1}\lor 2$, $3\lor 4$, $\overline{5}\lor \overline{6}$, $\overline{2}\lor \overline{5}\lor 6$ \Longrightarrow	
1 ^d 2 3 ^d	$\overline{1}\lor 2, 3\lor 4, \overline{5}\lor \overline{6}, \overline{2}\lor \overline{5}\lor 6 \implies$	
1 ^d 2 3 ^d 5 ^d	$\overline{1} \lor 2, 3 \lor 4, \overline{5} \lor \overline{6}, \overline{2} \lor \overline{5} \lor 6 \implies$	
1 ^d 2 3 ^d 5 ^d 6	$\overline{1}\lor 2, 3\lor 4, \overline{5}\lor \overline{6}, \overline{2}\lor \overline{5}\lor 6 \implies$	
1 ^d 2 3 ^d 5 ^d 6	$\overline{1}\lor 2$, $3\lor 4$, $\overline{5}\lor \overline{6}$, $\overline{2}\lor \overline{5}\lor 6$, $\overline{2}\lor \overline{5}$	
	\implies (Backjump)	
1 ^d 2 5	$\overline{1} \lor 2$, $3 \lor 4$, $\overline{5} \lor \overline{6}$, $\overline{2} \lor \overline{5} \lor 6$, $\overline{2} \lor \overline{5}$	
	\implies (Decide)	
1 ^d 2 5 3 ^d	$\overline{1} \lor 2$, $3 \lor 4$, $\overline{5} \lor \overline{6}$, $\overline{2} \lor \overline{5} \lor 6$, $\overline{2} \lor \overline{5}$	

(Decide) (UnitProp) (Decide) (Decide) (UnitProp) (Learn)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Result: Satisfiable

Two final rules also have to do with learning:

- If too many clauses are learned, performance suffers. It is useful to forget some clauses (typically those that have not participated in an application of UnitProp for a while).
- If we are stuck, we can *restart* by throwing away *M*. Since we have learned clauses, this means our efforts were not entirely wasted. Randomly restarting can improve performance dramatically.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Forget :

 $\begin{array}{cccc} M \parallel F, C & \Longrightarrow & M \parallel F & \text{if } \left\{ \begin{array}{c} F \models C \\ \text{Restart}: \\ M \parallel F & \Longrightarrow & \emptyset \parallel F \end{array} \right.$

Decision Heuristics

The rules do not give any strategy for *how* to pick a variable when applying Decide.

In practice, this is critical for performance.

There are many heuristics, but the most successful currently use very cheap heuristics to try to prefer variables that are frequently involved in conflicts.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Boolean Constraint Propagation

The most expensive part of a SAT solver is the part that checks for and applies instances of the UnitProp rule.

A key insight that can be used to speed this up is that as long as a clause has at least two unassigned literals, it cannot participate in an application of UnitProp.

For every clause, we assign two of its unassigned literals as the *watched* literals.

Every time a literal is assigned, only those clauses in which it is watched need to be checked for a possible triggering of the UnitProp rule.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

For those clauses that are inspected, if UnitProp is not triggered, a new unassigned literal is chosen to be watched.

Other Considerations

Modern SAT solvers have a number of other tricks to speed things up:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Highly tuned code
- Optimization for cache performance
- Preprocessing and clever CNF encodings
- Automatic tuning of program parameters