
CS 357: Advanced Topics in Formal Methods

Fall 2019

Lecture 4

Aleksandar Zeljić
(materials by Clark Barrett)

Stanford University

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a
high-level framework called Abstract DPLL.

I Abstract DPLL uses states and transitions to model the progress of the
algorithm.

I Most states are of the form M || F , where
I M is a sequence of annotated literals denoting a partial truth assignment,

and
I F is the CNF formula being checked, represented as a set of clauses.

I The initial state is ∅ || F , where F is to be checked for satisfiability.

I Transitions between states are defined by a set of conditional transition
rules.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a
high-level framework called Abstract DPLL.

I Abstract DPLL uses states and transitions to model the progress of the
algorithm.

I Most states are of the form M || F , where
I M is a sequence of annotated literals denoting a partial truth assignment,

and
I F is the CNF formula being checked, represented as a set of clauses.

I The initial state is ∅ || F , where F is to be checked for satisfiability.

I Transitions between states are defined by a set of conditional transition
rules.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a
high-level framework called Abstract DPLL.

I Abstract DPLL uses states and transitions to model the progress of the
algorithm.

I Most states are of the form M || F , where
I M is a sequence of annotated literals denoting a partial truth assignment,

and
I F is the CNF formula being checked, represented as a set of clauses.

I The initial state is ∅ || F , where F is to be checked for satisfiability.

I Transitions between states are defined by a set of conditional transition
rules.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a
high-level framework called Abstract DPLL.

I Abstract DPLL uses states and transitions to model the progress of the
algorithm.

I Most states are of the form M || F , where
I M is a sequence of annotated literals denoting a partial truth assignment,

and
I F is the CNF formula being checked, represented as a set of clauses.

I The initial state is ∅ || F , where F is to be checked for satisfiability.

I Transitions between states are defined by a set of conditional transition
rules.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a
high-level framework called Abstract DPLL.

I Abstract DPLL uses states and transitions to model the progress of the
algorithm.

I Most states are of the form M || F , where
I M is a sequence of annotated literals denoting a partial truth assignment,

and
I F is the CNF formula being checked, represented as a set of clauses.

I The initial state is ∅ || F , where F is to be checked for satisfiability.

I Transitions between states are defined by a set of conditional transition
rules.

Abstract DPLL

The final state is either:

I a special fail state: fail , if F is unsatisfiable, or

I M || G , where G is a CNF formula equisatisfiable with the original formula
F , and M satisfies G

We write M |= C to mean that for every truth assignment v , v(M) = True
implies v(C) = True.

Abstract DPLL Rules

UnitProp :

M || F , C ∨ l =⇒ M l || F , C ∨ l if

{
M |= ¬C
l is undefined in M

PureLiteral :

M || F =⇒ M l || F if

l occurs in some clause of F
¬l occurs in no clause of F
l is undefined in M

Decide :

M || F =⇒ M ld || F if

{
l or ¬l occurs in a clause of F
l is undefined in M

Backtrack :

M ld N || F , C =⇒ M ¬l || F , C if

{
M ld N |= ¬C
N contains no decision literals

Fail :

M || F , C =⇒ fail if

{
M |= ¬C
M contains no decision literals

Abstract DPLL Rules

UnitProp :

M || F , C ∨ l =⇒ M l || F , C ∨ l if

{
M |= ¬C
l is undefined in M

PureLiteral :

M || F =⇒ M l || F if

l occurs in some clause of F
¬l occurs in no clause of F
l is undefined in M

Decide :

M || F =⇒ M ld || F if

{
l or ¬l occurs in a clause of F
l is undefined in M

Backtrack :

M ld N || F , C =⇒ M ¬l || F , C if

{
M ld N |= ¬C
N contains no decision literals

Fail :

M || F , C =⇒ fail if

{
M |= ¬C
M contains no decision literals

Abstract DPLL Rules

UnitProp :

M || F , C ∨ l =⇒ M l || F , C ∨ l if

{
M |= ¬C
l is undefined in M

PureLiteral :

M || F =⇒ M l || F if

l occurs in some clause of F
¬l occurs in no clause of F
l is undefined in M

Decide :

M || F =⇒ M ld || F if

{
l or ¬l occurs in a clause of F
l is undefined in M

Backtrack :

M ld N || F , C =⇒ M ¬l || F , C if

{
M ld N |= ¬C
N contains no decision literals

Fail :

M || F , C =⇒ fail if

{
M |= ¬C
M contains no decision literals

Abstract DPLL Rules

UnitProp :

M || F , C ∨ l =⇒ M l || F , C ∨ l if

{
M |= ¬C
l is undefined in M

PureLiteral :

M || F =⇒ M l || F if

l occurs in some clause of F
¬l occurs in no clause of F
l is undefined in M

Decide :

M || F =⇒ M ld || F if

{
l or ¬l occurs in a clause of F
l is undefined in M

Backtrack :

M ld N || F , C =⇒ M ¬l || F , C if

{
M ld N |= ¬C
N contains no decision literals

Fail :

M || F , C =⇒ fail if

{
M |= ¬C
M contains no decision literals

Abstract DPLL Rules

UnitProp :

M || F , C ∨ l =⇒ M l || F , C ∨ l if

{
M |= ¬C
l is undefined in M

PureLiteral :

M || F =⇒ M l || F if

l occurs in some clause of F
¬l occurs in no clause of F
l is undefined in M

Decide :

M || F =⇒ M ld || F if

{
l or ¬l occurs in a clause of F
l is undefined in M

Backtrack :

M ld N || F , C =⇒ M ¬l || F , C if

{
M ld N |= ¬C
N contains no decision literals

Fail :

M || F , C =⇒ fail if

{
M |= ¬C
M contains no decision literals

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

=⇒ (PureLiteral)
4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)
4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)
4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)
fail

Result: Unsatisfiable

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)
4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

=⇒ (Decide)
4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)
4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)
4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)

fail

Result: Unsatisfiable

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)
4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

=⇒ (UnitProp)
4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)
4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)
fail

Result: Unsatisfiable

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)
4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)
4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

=⇒ (UnitProp)
4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)
4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)

fail

Result: Unsatisfiable

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)
4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)
4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

=⇒ (Backtrack)
4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)
fail

Result: Unsatisfiable

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)
4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)
4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)
4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

=⇒ (UnitProp)
4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)

fail

Result: Unsatisfiable

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)
4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)
4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)
4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

=⇒ (Fail)
fail

Result: Unsatisfiable

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)
4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)
4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)
4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)
fail

Result: Unsatisfiable

Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)
4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)
4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)
4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)
fail

Result: Unsatisfiable

Abstract DPLL: Backjumping and Learning

The basic rules can be improved by replacing the Backtrack rule with the more
powerful Backjump rule and adding a Learn rule:

Learn :

M || F =⇒ M || F , C if

{
all atoms of C occur in F
F |= C

Backjump :

M ld N || F , C =⇒ M l ′ || F , C if

M ld N |= ¬C , and there is
some clause C ′ ∨ l ′ such that :
F ,C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M, and

l′ or ¬l′ occurs in F or in M ld N

Abstract DPLL: Backjumping and Learning

The Backjump rule is best understood by introducing the notion of implication
graph, a directed graph associated with a state M || F of Abstract DPLL:

I The vertices are the variables in M

I There is an edge from v1 to v2 if v2 was assigned a value as the result of
an application of UnitProp using a clause containing v2.

When we reach a state in which M |= ¬C for some C ∈ F , we add an extra
conflict vertex and edges from each of the variables in C to the conflict vertex.

Abstract DPLL: Backjumping and Learning

The clause to use for backjumping (called the conflict clause) is obtained from
the resulting graph:

I We first cut the graph along edges in such a way that it separates the
conflict vertex from all of the decision vertices.

I Then, every vertex with an outgoing edge that was cut is marked.

I For each literal l in M whose variable is marked, −l is added to the
conflict clause.

To avoid ever having the same conflict again, we can learn the conflict clause
using the learn rule.

Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6

=⇒ (Decide)
1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)
1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Backjump)
1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Decide)
1d 2 5 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

Result: Satisfiable

Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d || 1∨2, 3∨4, 5∨6, 2∨5∨6

=⇒ (UnitProp)
1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Backjump)
1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Decide)
1d 2 5 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

Result: Satisfiable

Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6

=⇒ (Decide)
1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)
1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Backjump)
1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Decide)
1d 2 5 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

Result: Satisfiable

Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6

=⇒ (Decide)
1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Backjump)
1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Decide)
1d 2 5 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

Result: Satisfiable

Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6

=⇒ (UnitProp)
1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Backjump)
1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Decide)
1d 2 5 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

Result: Satisfiable

Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)
1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6

=⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Backjump)
1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Decide)
1d 2 5 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

Result: Satisfiable

Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)
1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Backjump)
1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Decide)
1d 2 5 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

Result: Satisfiable

Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)
1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5
=⇒ (Backjump)

1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Decide)
1d 2 5 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

Result: Satisfiable

Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)
1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5
=⇒ (Backjump)

1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5
=⇒ (Decide)

1d 2 5 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

Result: Satisfiable

Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)
1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)
1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5
=⇒ (Backjump)

1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5
=⇒ (Decide)

1d 2 5 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

Result: Satisfiable

Abstract DPLL Rules

Two final rules also have to do with learning:

I If too many clauses are learned, performance suffers. It is useful to forget
some clauses (typically those that have not participated in an application
of UnitProp for a while).

I If we are stuck, we can restart by throwing away M. Since we have learned
clauses, this means our efforts were not entirely wasted. Randomly
restarting can improve performance dramatically.

Forget :

M || F , C =⇒ M || F if
{

F |= C
Restart :

M || F =⇒ ∅ || F

Decision Heuristics

The rules do not give any strategy for how to pick a variable when applying
Decide.

In practice, this is critical for performance.

There are many heuristics, but the most successful currently use very cheap
heuristics to try to prefer variables that are frequently involved in conflicts.

Boolean Constraint Propagation

The most expensive part of a SAT solver is the part that checks for and applies
instances of the UnitProp rule.

A key insight that can be used to speed this up is that as long as a clause has
at least two unassigned literals, it cannot participate in an application of
UnitProp.

For every clause, we assign two of its unassigned literals as the watched literals.

Every time a literal is assigned, only those clauses in which it is watched need
to be checked for a possible triggering of the UnitProp rule.

For those clauses that are inspected, if UnitProp is not triggered, a new
unassigned literal is chosen to be watched.

Other Considerations

Modern SAT solvers have a number of other tricks to speed things up:

I Highly tuned code

I Optimization for cache performance

I Preprocessing and clever CNF encodings

I Automatic tuning of program parameters

