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Combining Theories



Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

a ≈ b + 2 ∧ A ≈ write(B, a + 1, 4) ∧
(read(A, b + 3) ≈ 2 ∨ f(a− 1) 6= f(b + 1))

Solving that formula requires reasoning over

• the theory of linear arithmetic (TLA)

• the theory of arrays (TA)

• the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]
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Motivating Example (Convex Case)

Consider the following set of literals over TLRA ∪ TUF

(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a

f(0) > a+ 2

x = y

First step: purify literals so that each belongs to a single theory
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Motivating Example (Convex Case)

Consider the following set of literals over TLRA ∪ TUF

(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a

f(0) > a+ 2

x = y

First step: purify literals so that each belongs to a single theory

f(f(x)− f(y)) = a =⇒ f(e1) = a =⇒ f(e1) = a

e1 = f(x)− f(y) e1 = e2 − e3
e2 = f(x)

e3 = f(y)
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Motivating Example (Convex Case)

Consider the following set of literals over TLRA ∪ TUF

(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a

f(0) > a+ 2

x = y

First step: purify literals so that each belongs to a single theory

f(0) > a + 2 =⇒ f(e4) > a + 2 =⇒ f(e4) = e5
e4 = 0 e4 = 0

e5 > a + 2
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Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over
shared constants e1, e2, e3, e4, e5, a

L1 L2

f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0

f(y) = e3 e5 > a + 2

f(e4) = e5 e2 = e3
x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4

L1 |=UF a = e5

Third step: check for satisfiability locally

L1 6|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable
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Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over TLIA ∪ TUF

(TLIA, linear integer arithmetic):

1 ≤ x ≤ 2

f(1) = a

f(2) = f(1) + 3

a = b+ 2

First step: purify literals so that each belongs to a single theory
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Consider the following unsatisfiable set of literals over TLIA ∪ TUF

(TLIA, linear integer arithmetic):

1 ≤ x ≤ 2

f(1) = a

f(2) = f(1) + 3

a = b+ 2

First step: purify literals so that each belongs to a single theory

f(1) = a =⇒ f(e1) = a

e1 = 1
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Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over TLIA ∪ TUF

(TLIA, linear integer arithmetic):

1 ≤ x ≤ 2

f(1) = a

f(2) = f(1) + 3

a = b+ 2

First step: purify literals so that each belongs to a single theory

f(2) = f(1) + 3 =⇒ e2 = 2

f(e2) = e3

f(e1) = e4

e3 = e4 + 3
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

No more entailed equalities, but L1 |=LIA x = e1 ∨ x = e2
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

Consider each case of x = e1 ∨ x = e2 separately
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

Case 1) x = e1
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

L2 |=UF a = b, which entails ⊥ when sent to L1
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3

a = e4
x = e2

Case 2) x = e2
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3

a = e4
x = e2
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Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3

a = e4
x = e2

L2 |=UF e3 = b, which entails ⊥ when sent to L1
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The Nelson-Oppen Method

• For i = 1, 2, let Ti be a first-order theory of signature Σi (set of

function and predicate symbols in Ti other than =)

• Let T = T1 ∪ T2

• Let C be a finite set of free constants (i.e., not in Σ1 ∪ Σ2)

We consider only input problems of the form

L1 ∪ L2

where each Li is a finite set of ground (i.e., variable-free)
(Σi ∪ C)-literals

Note: Because of purification, there is no loss of generality in considering
only ground (Σi ∪ C)-literals
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The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c 6= d ∈ A for all c, d ∈ C

2. If Li ∪A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat
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Correctness of the NO Method

Proposition (Termination) The method is terminating.

(Trivially, because there is only a finite number of arrangements to guess)

Proposition (Soundness) If the method returns unsat for every
arrangement, the input is (T1 ∪ T2)-unsatisfiable.

(Because satisfiability in (T1 ∪ T2) is always preserved)

Proposition (Completeness) If Σ1 ∩ Σ2 = ∅ and T1 and T2 are stably
infinite, when the method returns sat for some arrangement, the input
is (T1 ∪ T2)-is satisfiable.
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Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T

Many interesting theories are stably infinite:

• Theories of an infinite structure (e.g., integer arithmetic)

• Complete theories with an infinite model (e.g., theory of dense linear

orders, theory of lists)

• Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals
L |=T s1 = t1 ∨ · · · ∨ sn = tn =⇒ L |=T si = ti for some i

Note: With convex theories, arrangements do not need to be guessed—they
can be computed by (theory) propagation
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Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T

Other interesting theories are not stably infinite:

• Theories of a finite structure (e.g., theory of bit vectors of finite size,

arithmetic modulo n)

• Theories with models of bounded cardinality (e.g., theory of strings of

bounded length)

• Some equational/Horn theories

The Nelson-Oppen method has been extended to some classes of
non-stably infinite theories [TZ05, RRZ05, JB10]
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SMT Solving with Multiple Theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single SMT
solver for T = T1 ∪ · · · ∪ Tn?
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SMT Solving with Multiple Theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single SMT
solver for T = T1 ∪ · · · ∪ Tn?

Quick Solution:

1. Combine S1, . . . , Sn with Nelson-Oppen into a theory solver for
T

2. Build a DPLL(T ) solver as usual
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SMT Solving with Multiple Theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single SMT
solver for T = T1 ∪ · · · ∪ Tn?

Better Solution [Bar02, BBC+05b, BNOT06]:

1. Extend DPLL(T ) to DPLL(T1, . . . , Tn)

2. Lift Nelson-Oppen to the DPLL(X1, . . . , Xn) level

3. Build a DPLL(T1, . . . , Tn) solver
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Modeling DPLL(T1, . . . , Tn) Abstractly

• Let n = 2, for simplicity

• Let Ti be of signature Σi for i = 1, 2, with Σ1 ∩ Σ2 = ∅

• Let C be a set of free constants

• Assume wlog that each input literal has signature (Σ1 ∪ C) or
(Σ2 ∪ C) (no mixed literals)

• Let M|i
def
= {(Σi ∪ C)-literals of M and their complement}

• Let I(M)
def
= {c = d | c, d occur in C, M|1 and M|2} ∪
{c 6= d | c, d occur in C, M|1 and M|2}

(interface literals)
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Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide
l ∈ Lit(F) ∪ I(M) l, l /∈ M

M := M • l

Only change: decide on interface equalities as well

T -Propagate
l ∈ Lit(F) ∪ I(M) i ∈ {1, 2} M |=Ti l l, l /∈ M

M := M l

Only change: propagate interface equalities as well, but reason locally
in each Ti
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Abstract DPLL Modulo Multiple Theories

T -Conflict

C = no l1, . . . , ln ∈ M l1, . . . , ln |=Ti ⊥ i ∈ {1, 2}

C := l1 ∨ · · · ∨ ln
T -Explain

C = l ∨D l1, . . . , ln |=Ti l i ∈ {1, 2} l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Only change: reason locally in each Ti

I-Learn

|=Ti l1 ∨ · · · ∨ ln l1, . . . , ln ∈ M|i ∪ I(M) i ∈ {1, 2}

F := F ∪ {l1 ∨ · · · ∨ ln}

New rule: for entailed disjunctions of interface literals
17
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Example — Convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a + 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T -Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T -Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T -Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T -Conflict (7, 10 |=LRA ⊥)

fail by Fail
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Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail
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0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)
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Theory Solvers



Theory Solvers

Given a theory T , a Theory Solver for T takes as input a set Φ of
literals and determines whether Φ is T -satisfiable.

Φ is T -satisfiable iff there is some model M of T such that each
formula in Φ holds in M .
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Theories of Interest: UF

Equality (=) with Uninterpreted Functions [NO80, BD94, NO07]

Typically used to abstract unsupported constructs, e.g.:

• non-linear multiplication in arithmetic
• ALUs in circuits

Example: The formula

a ∗ (|b|+ c) = d ∧ b ∗ (|a|+ c) 6= d ∧ a = b

is unsatisfiable, but no arithmetic reasoning is needed

if we abstract it to

mul(a, add(abs(b), c)) = d ∧ mul(b, add(abs(a), c)) 6= d ∧ a = b

it is still unsatisfiable
21



Theories of Interest: Arithmetic

Very useful, for obvious reasons

Restricted fragments (over the reals or the integers) support more
efficient methods:

• Bounds: x ./ k with ./ ∈ {<, >, ≤, ≥, =} [BBC+05a]

• Difference logic: x− y ./ k, with
./ ∈ {<, >, ≤, ≥, =} [NO05, WIGG05, CM06]

• UTVPI: ±x± y ./ k, with ./ ∈ {<, >, ≤, ≥, =} [LM05]

• Linear arithmetic, e.g: 2x− 3y + 4z ≤ 5 [DdM06]

• Non-linear arithmetic, e.g:
2xy + 4xz2 − 5y ≤ 10 [BLNM+09, ZM10, JdM12]
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Theories of Interest: Arrays

Used in software verification and hardware verification (for
memories) [SBDL01, BNO+08a, dMB09]

Two interpreted function symbols read and write

Axiomatized by:

• ∀a ∀i ∀v read(write(a, i, v), i) = v

• ∀a ∀i ∀j ∀v i 6= j → read(write(a, i, v), j) = read(a, j)

Sometimes also with extensionality :

• ∀a ∀b (∀i read(a, i) = read(b, i) → a = b)

Is the following set of literals satisfiable in this theory?

write(a, i, x) 6= b, read(b, i) = y, read(write(b, i, x), j) = y, a = b, i = j

23



Theories of Interest: Bit vectors

Useful both in hardware and software verification [BCF+07, BB09, HBJ+14]

Universe consists of (fixed-sized) vectors of bits

Different types of operations:

• String-like: concat, extract, . . .
• Logical: bit-wise not, or, and, . . .
• Arithmetic: add, subtract, multiply, . . .
• Comparison: <,>, . . .

Is this formula satisfiable over bit vectors of size 3?

a[1 : 0] 6= b[1 : 0] ∧ (a | b) = c ∧ c[0] = 0 ∧ a[1] + b[1] = 0
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Implementing a Theory Solver: Difference Logic

We consider a simple example: difference logic.

In difference logic, we are interested in the satisfiability of a
conjunction of arithmetic atoms.

Each atom is of the form x− y ./ c, where x and y are variables, c is
a numeric constant, and ./ ∈ {=, <,≤, >,≥}.

The variables can range over either the integers (QF_IDL) or the reals
(QF_RDL).
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Difference Logic

The first step is to rewrite everything in terms of ≤:
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Difference Logic

Now we have a conjunction of literals, all of the form x− y ≤ c.

From these literals, we form a weighted directed graph with a vertex
for each variable.

For each literal x− y ≤ c, there is an edge x c−→ y.

The set of literals is satisfiable iff there is no cycle for which the sum
of the weights on the edges is negative.

There are a number of efficient algorithms for detecting negative
cycles in graphs.
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Difference Logic Example

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w− x = 2 ∧ z−w < 0
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Difference Logic Example

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w− x = 2 ∧ z−w < 0

x− y = 5

z − y ≥ 2

z − x > 2

⇒

w − x = 2

w − x ≤ 2 ∧ x− w ≤ −2

z − w < 0
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Difference Logic Example

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w− x = 2 ∧ z−w < 0

x− y = 5

z − y ≥ 2

z − x > 2 ⇒
w − x = 2

w − x ≤ 2 ∧ x− w ≤ −2

z − w < 0
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Difference Logic Example

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w− x = 2 ∧ z−w < 0

x− y = 5 x− y ≤ 5 ∧ y − x ≤ −5

z − y ≥ 2 y − z ≤ −2

z − x > 2 ⇒ x− z ≤ −3

w − x = 2 w − x ≤ 2 ∧ x− w ≤ −2

z − w < 0 z − w ≤ −1
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Difference Logic Example

−3

−2

−12

−2

5

−5
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