
Nelson-Open Theory Combination

Aleksandar Zeljić
Materials by Clark Barrett, Stanford University

CS357: October 2019

1

Acknowledgments: Many thanks to Cesare Tinelli and Albert Oliveras for
contributing some of the material used in these slides.

Disclamer: The literature on SMT and its applications is vast. The
bibliographic references provided here are just a sample. Apologies to all
authors whose work is not cited.

2

Combining Theories

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

a ≈ b + 2 ∧ A ≈ write(B, a + 1, 4) ∧
(read(A, b + 3) ≈ 2 ∨ f(a− 1) 6= f(b + 1))

Solving that formula requires reasoning over

• the theory of linear arithmetic (TLA)

• the theory of arrays (TA)

• the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]

3

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

a ≈ b + 2 ∧ A ≈ write(B, a + 1, 4) ∧
(read(A, b + 3) ≈ 2 ∨ f(a− 1) 6= f(b + 1))

Solving that formula requires reasoning over

• the theory of linear arithmetic (TLA)

• the theory of arrays (TA)

• the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]

3

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

a ≈ b + 2 ∧ A ≈ write(B, a + 1, 4) ∧
(read(A, b + 3) ≈ 2 ∨ f(a− 1) 6= f(b + 1))

Solving that formula requires reasoning over

• the theory of linear arithmetic (TLA)

• the theory of arrays (TA)

• the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]

3

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like:

a ≈ b + 2 ∧ A ≈ write(B, a + 1, 4) ∧
(read(A, b + 3) ≈ 2 ∨ f(a− 1) 6= f(b + 1))

Solving that formula requires reasoning over

• the theory of linear arithmetic (TLA)

• the theory of arrays (TA)

• the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]

3

Motivating Example (Convex Case)

Consider the following set of literals over TLRA ∪ TUF

(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a

f(0) > a+ 2

x = y

First step: purify literals so that each belongs to a single theory

4

Motivating Example (Convex Case)

Consider the following set of literals over TLRA ∪ TUF

(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a

f(0) > a+ 2

x = y

First step: purify literals so that each belongs to a single theory

4

Motivating Example (Convex Case)

Consider the following set of literals over TLRA ∪ TUF

(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a

f(0) > a+ 2

x = y

First step: purify literals so that each belongs to a single theory

f(f(x)− f(y)) = a =⇒ f(e1) = a =⇒ f(e1) = a

e1 = f(x)− f(y) e1 = e2 − e3
e2 = f(x)

e3 = f(y)

4

Motivating Example (Convex Case)

Consider the following set of literals over TLRA ∪ TUF

(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a

f(0) > a+ 2

x = y

First step: purify literals so that each belongs to a single theory

f(0) > a + 2 =⇒ f(e4) > a + 2 =⇒ f(e4) = e5
e4 = 0 e4 = 0

e5 > a + 2

4

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over
shared constants e1, e2, e3, e4, e5, a

L1 L2

f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0

f(y) = e3 e5 > a + 2

f(e4) = e5 e2 = e3
x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4

L1 |=UF a = e5

Third step: check for satisfiability locally

L1 6|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

5

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over
shared constants e1, e2, e3, e4, e5, a

L1 L2

f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0

f(y) = e3 e5 > a + 2

f(e4) = e5 e2 = e3
x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4

L1 |=UF a = e5

Third step: check for satisfiability locally

L1 6|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

5

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over
shared constants e1, e2, e3, e4, e5, a

L1 L2

f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0

f(y) = e3 e5 > a + 2

f(e4) = e5 e2 = e3
x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4

L1 |=UF a = e5

Third step: check for satisfiability locally

L1 6|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

5

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over
shared constants e1, e2, e3, e4, e5, a

L1 L2

f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0

f(y) = e3 e5 > a + 2

f(e4) = e5 e2 = e3
x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4

L1 |=UF a = e5

Third step: check for satisfiability locally

L1 6|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

5

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over
shared constants e1, e2, e3, e4, e5, a

L1 L2

f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0

f(y) = e3 e5 > a + 2

f(e4) = e5 e2 = e3
x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4

L1 |=UF a = e5

Third step: check for satisfiability locally

L1 6|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

5

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over
shared constants e1, e2, e3, e4, e5, a

L1 L2

f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0

f(y) = e3 e5 > a + 2

f(e4) = e5 e2 = e3
x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4

L1 |=UF a = e5

Third step: check for satisfiability locally

L1 6|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

5

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over
shared constants e1, e2, e3, e4, e5, a

L1 L2

f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0

f(y) = e3 e5 > a + 2

f(e4) = e5 e2 = e3
x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4

L1 |=UF a = e5

Third step: check for satisfiability locally

L1 6|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

5

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over
shared constants e1, e2, e3, e4, e5, a

L1 L2

f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0

f(y) = e3 e5 > a + 2

f(e4) = e5 e2 = e3
x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4

L1 |=UF a = e5

Third step: check for satisfiability locally

L1 6|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

5

Motivating Example (Convex Case)

Second step: exchange entailed interface equalities, equalities over
shared constants e1, e2, e3, e4, e5, a

L1 L2

f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0

f(y) = e3 e5 > a + 2

f(e4) = e5 e2 = e3
x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4

L1 |=UF a = e5

Third step: check for satisfiability locally

L1 6|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

5

Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over TLIA ∪ TUF

(TLIA, linear integer arithmetic):

1 ≤ x ≤ 2

f(1) = a

f(2) = f(1) + 3

a = b+ 2

First step: purify literals so that each belongs to a single theory

6

Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over TLIA ∪ TUF

(TLIA, linear integer arithmetic):

1 ≤ x ≤ 2

f(1) = a

f(2) = f(1) + 3

a = b+ 2

First step: purify literals so that each belongs to a single theory

6

Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over TLIA ∪ TUF

(TLIA, linear integer arithmetic):

1 ≤ x ≤ 2

f(1) = a

f(2) = f(1) + 3

a = b+ 2

First step: purify literals so that each belongs to a single theory

f(1) = a =⇒ f(e1) = a

e1 = 1

6

Motivating Example (Non-convex Case)

Consider the following unsatisfiable set of literals over TLIA ∪ TUF

(TLIA, linear integer arithmetic):

1 ≤ x ≤ 2

f(1) = a

f(2) = f(1) + 3

a = b+ 2

First step: purify literals so that each belongs to a single theory

f(2) = f(1) + 3 =⇒ e2 = 2

f(e2) = e3

f(e1) = e4

e3 = e4 + 3

6

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

7

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

No more entailed equalities, but L1 |=LIA x = e1 ∨ x = e2

7

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

Consider each case of x = e1 ∨ x = e2 separately

7

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

Case 1) x = e1

7

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

7

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3

a = e4
x = e1

L2 |=UF a = b, which entails ⊥ when sent to L1

7

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3

a = e4
x = e2

8

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3

a = e4
x = e2

Case 2) x = e2

8

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3

a = e4
x = e2

8

Motivating Example (Non-convex Case)

Second step: exchange entailed interface equalities over shared
constants x, e1, a, b, e2, e3, e4

L1 L2

1 ≤ x f(e1) = a

x ≤ 2 f(x) = b

e1 = 1 f(e2) = e3
a = b + 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3

a = e4
x = e2

L2 |=UF e3 = b, which entails ⊥ when sent to L1

8

The Nelson-Oppen Method

• For i = 1, 2, let Ti be a first-order theory of signature Σi (set of

function and predicate symbols in Ti other than =)

• Let T = T1 ∪ T2

• Let C be a finite set of free constants (i.e., not in Σ1 ∪ Σ2)

We consider only input problems of the form

L1 ∪ L2

where each Li is a finite set of ground (i.e., variable-free)
(Σi ∪ C)-literals

Note: Because of purification, there is no loss of generality in considering
only ground (Σi ∪ C)-literals

9

The Nelson-Oppen Method

• For i = 1, 2, let Ti be a first-order theory of signature Σi (set of

function and predicate symbols in Ti other than =)

• Let T = T1 ∪ T2

• Let C be a finite set of free constants (i.e., not in Σ1 ∪ Σ2)

We consider only input problems of the form

L1 ∪ L2

where each Li is a finite set of ground (i.e., variable-free)
(Σi ∪ C)-literals

Note: Because of purification, there is no loss of generality in considering
only ground (Σi ∪ C)-literals

9

The Nelson-Oppen Method

• For i = 1, 2, let Ti be a first-order theory of signature Σi (set of

function and predicate symbols in Ti other than =)

• Let T = T1 ∪ T2

• Let C be a finite set of free constants (i.e., not in Σ1 ∪ Σ2)

We consider only input problems of the form

L1 ∪ L2

where each Li is a finite set of ground (i.e., variable-free)
(Σi ∪ C)-literals

Note: Because of purification, there is no loss of generality in considering
only ground (Σi ∪ C)-literals

9

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c 6= d ∈ A for all c, d ∈ C

2. If Li ∪A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

10

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c 6= d ∈ A for all c, d ∈ C

2. If Li ∪A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

10

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c 6= d ∈ A for all c, d ∈ C

2. If Li ∪A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

10

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c 6= d ∈ A for all c, d ∈ C

2. If Li ∪A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

10

The Nelson-Oppen Method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c 6= d ∈ A for all c, d ∈ C

2. If Li ∪A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

10

Correctness of the NO Method

Proposition (Termination) The method is terminating.

(Trivially, because there is only a finite number of arrangements to guess)

Proposition (Soundness) If the method returns unsat for every
arrangement, the input is (T1 ∪ T2)-unsatisfiable.

(Because satisfiability in (T1 ∪ T2) is always preserved)

Proposition (Completeness) If Σ1 ∩ Σ2 = ∅ and T1 and T2 are stably
infinite, when the method returns sat for some arrangement, the input
is (T1 ∪ T2)-is satisfiable.

11

Correctness of the NO Method

Proposition (Termination) The method is terminating.

(Trivially, because there is only a finite number of arrangements to guess)

Proposition (Soundness) If the method returns unsat for every
arrangement, the input is (T1 ∪ T2)-unsatisfiable.

(Because satisfiability in (T1 ∪ T2) is always preserved)

Proposition (Completeness) If Σ1 ∩ Σ2 = ∅ and T1 and T2 are stably
infinite, when the method returns sat for some arrangement, the input
is (T1 ∪ T2)-is satisfiable.

11

Correctness of the NO Method

Proposition (Termination) The method is terminating.

(Trivially, because there is only a finite number of arrangements to guess)

Proposition (Soundness) If the method returns unsat for every
arrangement, the input is (T1 ∪ T2)-unsatisfiable.

(Because satisfiability in (T1 ∪ T2) is always preserved)

Proposition (Completeness) If Σ1 ∩ Σ2 = ∅ and T1 and T2 are stably
infinite, when the method returns sat for some arrangement, the input
is (T1 ∪ T2)-is satisfiable.

11

Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T

Many interesting theories are stably infinite:

• Theories of an infinite structure (e.g., integer arithmetic)

• Complete theories with an infinite model (e.g., theory of dense linear

orders, theory of lists)

• Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals
L |=T s1 = t1 ∨ · · · ∨ sn = tn =⇒ L |=T si = ti for some i

Note: With convex theories, arrangements do not need to be guessed—they
can be computed by (theory) propagation

12

Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T

Many interesting theories are stably infinite:

• Theories of an infinite structure (e.g., integer arithmetic)

• Complete theories with an infinite model (e.g., theory of dense linear

orders, theory of lists)

• Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals
L |=T s1 = t1 ∨ · · · ∨ sn = tn =⇒ L |=T si = ti for some i

Note: With convex theories, arrangements do not need to be guessed—they
can be computed by (theory) propagation

12

Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T

Many interesting theories are stably infinite:

• Theories of an infinite structure (e.g., integer arithmetic)

• Complete theories with an infinite model (e.g., theory of dense linear

orders, theory of lists)

• Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals
L |=T s1 = t1 ∨ · · · ∨ sn = tn =⇒ L |=T si = ti for some i

Note: With convex theories, arrangements do not need to be guessed—they
can be computed by (theory) propagation

12

Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T

Other interesting theories are not stably infinite:

• Theories of a finite structure (e.g., theory of bit vectors of finite size,

arithmetic modulo n)

• Theories with models of bounded cardinality (e.g., theory of strings of

bounded length)

• Some equational/Horn theories

The Nelson-Oppen method has been extended to some classes of
non-stably infinite theories [TZ05, RRZ05, JB10]

13

Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T

Other interesting theories are not stably infinite:

• Theories of a finite structure (e.g., theory of bit vectors of finite size,

arithmetic modulo n)

• Theories with models of bounded cardinality (e.g., theory of strings of

bounded length)

• Some equational/Horn theories

The Nelson-Oppen method has been extended to some classes of
non-stably infinite theories [TZ05, RRZ05, JB10]

13

Stably Infinite Theories

Def. A theory T is stably infinite iff every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T

Other interesting theories are not stably infinite:

• Theories of a finite structure (e.g., theory of bit vectors of finite size,

arithmetic modulo n)

• Theories with models of bounded cardinality (e.g., theory of strings of

bounded length)

• Some equational/Horn theories

The Nelson-Oppen method has been extended to some classes of
non-stably infinite theories [TZ05, RRZ05, JB10]

13

SMT Solving with Multiple Theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single SMT
solver for T = T1 ∪ · · · ∪ Tn?

14

SMT Solving with Multiple Theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single SMT
solver for T = T1 ∪ · · · ∪ Tn?

Quick Solution:

1. Combine S1, . . . , Sn with Nelson-Oppen into a theory solver for
T

2. Build a DPLL(T) solver as usual

14

SMT Solving with Multiple Theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single SMT
solver for T = T1 ∪ · · · ∪ Tn?

Better Solution [Bar02, BBC+05b, BNOT06]:

1. Extend DPLL(T) to DPLL(T1, . . . , Tn)

2. Lift Nelson-Oppen to the DPLL(X1, . . . , Xn) level

3. Build a DPLL(T1, . . . , Tn) solver

14

Modeling DPLL(T1, . . . , Tn) Abstractly

• Let n = 2, for simplicity

• Let Ti be of signature Σi for i = 1, 2, with Σ1 ∩ Σ2 = ∅

• Let C be a set of free constants

• Assume wlog that each input literal has signature (Σ1 ∪ C) or
(Σ2 ∪ C) (no mixed literals)

• Let M|i
def
= {(Σi ∪ C)-literals of M and their complement}

• Let I(M)
def
= {c = d | c, d occur in C, M|1 and M|2} ∪
{c 6= d | c, d occur in C, M|1 and M|2}

(interface literals)

15

Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide
l ∈ Lit(F) ∪ I(M) l, l /∈ M

M := M • l

Only change: decide on interface equalities as well

T -Propagate
l ∈ Lit(F) ∪ I(M) i ∈ {1, 2} M |=Ti l l, l /∈ M

M := M l

Only change: propagate interface equalities as well, but reason locally
in each Ti

16

Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide
l ∈ Lit(F) ∪ I(M) l, l /∈ M

M := M • l

Only change: decide on interface equalities as well

T -Propagate
l ∈ Lit(F) ∪ I(M) i ∈ {1, 2} M |=Ti l l, l /∈ M

M := M l

Only change: propagate interface equalities as well, but reason locally
in each Ti

16

Abstract DPLL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide
l ∈ Lit(F) ∪ I(M) l, l /∈ M

M := M • l

Only change: decide on interface equalities as well

T -Propagate
l ∈ Lit(F) ∪ I(M) i ∈ {1, 2} M |=Ti l l, l /∈ M

M := M l

Only change: propagate interface equalities as well, but reason locally
in each Ti

16

Abstract DPLL Modulo Multiple Theories

T -Conflict

C = no l1, . . . , ln ∈ M l1, . . . , ln |=Ti ⊥ i ∈ {1, 2}

C := l1 ∨ · · · ∨ ln
T -Explain

C = l ∨D l1, . . . , ln |=Ti l i ∈ {1, 2} l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Only change: reason locally in each Ti

I-Learn

|=Ti l1 ∨ · · · ∨ ln l1, . . . , ln ∈ M|i ∪ I(M) i ∈ {1, 2}

F := F ∪ {l1 ∨ · · · ∨ ln}

New rule: for entailed disjunctions of interface literals
17

Abstract DPLL Modulo Multiple Theories

T -Conflict

C = no l1, . . . , ln ∈ M l1, . . . , ln |=Ti ⊥ i ∈ {1, 2}

C := l1 ∨ · · · ∨ ln
T -Explain

C = l ∨D l1, . . . , ln |=Ti l i ∈ {1, 2} l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D

Only change: reason locally in each Ti

I-Learn

|=Ti l1 ∨ · · · ∨ ln l1, . . . , ln ∈ M|i ∪ I(M) i ∈ {1, 2}

F := F ∪ {l1 ∨ · · · ∨ ln}

New rule: for entailed disjunctions of interface literals
17

Example — Convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a + 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T -Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T -Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T -Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T -Conflict (7, 10 |=LRA ⊥)

fail by Fail

18

Example — Convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a + 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T -Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T -Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T -Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T -Conflict (7, 10 |=LRA ⊥)

fail by Fail

18

Example — Convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a + 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T -Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T -Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T -Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T -Conflict (7, 10 |=LRA ⊥)

fail by Fail

18

Example — Convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a + 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T -Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T -Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T -Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T -Conflict (7, 10 |=LRA ⊥)

fail by Fail

18

Example — Convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a + 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T -Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T -Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T -Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T -Conflict (7, 10 |=LRA ⊥)

fail by Fail

18

Example — Convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a + 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T -Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T -Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T -Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T -Conflict (7, 10 |=LRA ⊥)

fail by Fail

18

Example — Convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a + 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T -Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T -Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T -Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T -Conflict (7, 10 |=LRA ⊥)

fail by Fail

18

Example — Convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a + 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T -Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T -Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T -Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T -Conflict (7, 10 |=LRA ⊥)

fail by Fail

18

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Example — Non-convex Theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b + 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T -Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T -Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

19

Theory Solvers

Theory Solvers

Given a theory T , a Theory Solver for T takes as input a set Φ of
literals and determines whether Φ is T -satisfiable.

Φ is T -satisfiable iff there is some model M of T such that each
formula in Φ holds in M .

20

Theories of Interest: UF

Equality (=) with Uninterpreted Functions [NO80, BD94, NO07]

Typically used to abstract unsupported constructs, e.g.:

• non-linear multiplication in arithmetic
• ALUs in circuits

Example: The formula

a ∗ (|b|+ c) = d ∧ b ∗ (|a|+ c) 6= d ∧ a = b

is unsatisfiable, but no arithmetic reasoning is needed

if we abstract it to

mul(a, add(abs(b), c)) = d ∧ mul(b, add(abs(a), c)) 6= d ∧ a = b

it is still unsatisfiable
21

Theories of Interest: Arithmetic

Very useful, for obvious reasons

Restricted fragments (over the reals or the integers) support more
efficient methods:

• Bounds: x ./ k with ./ ∈ {<, >, ≤, ≥, =} [BBC+05a]

• Difference logic: x− y ./ k, with
./ ∈ {<, >, ≤, ≥, =} [NO05, WIGG05, CM06]

• UTVPI: ±x± y ./ k, with ./ ∈ {<, >, ≤, ≥, =} [LM05]

• Linear arithmetic, e.g: 2x− 3y + 4z ≤ 5 [DdM06]

• Non-linear arithmetic, e.g:
2xy + 4xz2 − 5y ≤ 10 [BLNM+09, ZM10, JdM12]

22

Theories of Interest: Arrays

Used in software verification and hardware verification (for
memories) [SBDL01, BNO+08a, dMB09]

Two interpreted function symbols read and write

Axiomatized by:

• ∀a ∀i ∀v read(write(a, i, v), i) = v

• ∀a ∀i ∀j ∀v i 6= j → read(write(a, i, v), j) = read(a, j)

Sometimes also with extensionality :

• ∀a ∀b (∀i read(a, i) = read(b, i) → a = b)

Is the following set of literals satisfiable in this theory?

write(a, i, x) 6= b, read(b, i) = y, read(write(b, i, x), j) = y, a = b, i = j

23

Theories of Interest: Bit vectors

Useful both in hardware and software verification [BCF+07, BB09, HBJ+14]

Universe consists of (fixed-sized) vectors of bits

Different types of operations:

• String-like: concat, extract, . . .
• Logical: bit-wise not, or, and, . . .
• Arithmetic: add, subtract, multiply, . . .
• Comparison: <,>, . . .

Is this formula satisfiable over bit vectors of size 3?

a[1 : 0] 6= b[1 : 0] ∧ (a | b) = c ∧ c[0] = 0 ∧ a[1] + b[1] = 0

24

Implementing a Theory Solver: Difference Logic

We consider a simple example: difference logic.

In difference logic, we are interested in the satisfiability of a
conjunction of arithmetic atoms.

Each atom is of the form x− y ./ c, where x and y are variables, c is
a numeric constant, and ./ ∈ {=, <,≤, >,≥}.

The variables can range over either the integers (QF_IDL) or the reals
(QF_RDL).

25

Difference Logic

The first step is to rewrite everything in terms of ≤:

26

Difference Logic

The first step is to rewrite everything in terms of ≤:

• x− y = c =⇒ x− y ≤ c ∧ x− y ≥ c

26

Difference Logic

The first step is to rewrite everything in terms of ≤:

• x− y = c =⇒ x− y ≤ c ∧ x− y ≥ c
• x− y ≥ c =⇒ y − x ≤ −c

26

Difference Logic

The first step is to rewrite everything in terms of ≤:

• x− y = c =⇒ x− y ≤ c ∧ x− y ≥ c
• x− y ≥ c =⇒ y − x ≤ −c
• x− y > c =⇒ y − x < −c

26

Difference Logic

The first step is to rewrite everything in terms of ≤:

• x− y = c =⇒ x− y ≤ c ∧ x− y ≥ c
• x− y ≥ c =⇒ y − x ≤ −c
• x− y > c =⇒ y − x < −c
• x− y < c =⇒ x− y ≤ c− 1 (integers)

26

Difference Logic

The first step is to rewrite everything in terms of ≤:

• x− y = c =⇒ x− y ≤ c ∧ x− y ≥ c
• x− y ≥ c =⇒ y − x ≤ −c
• x− y > c =⇒ y − x < −c
• x− y < c =⇒ x− y ≤ c− 1 (integers)

• x− y < c =⇒ x− y ≤ c− δ (reals)

26

Difference Logic

Now we have a conjunction of literals, all of the form x− y ≤ c.

From these literals, we form a weighted directed graph with a vertex
for each variable.

For each literal x− y ≤ c, there is an edge x c−→ y.

The set of literals is satisfiable iff there is no cycle for which the sum
of the weights on the edges is negative.

There are a number of efficient algorithms for detecting negative
cycles in graphs.

27

Difference Logic Example

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w− x = 2 ∧ z−w < 0

28

Difference Logic Example

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w− x = 2 ∧ z−w < 0

x− y = 5

z − y ≥ 2

z − x > 2

⇒

w − x = 2

w − x ≤ 2 ∧ x− w ≤ −2

z − w < 0

28

Difference Logic Example

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w− x = 2 ∧ z−w < 0

x− y = 5

z − y ≥ 2

z − x > 2 ⇒
w − x = 2

w − x ≤ 2 ∧ x− w ≤ −2

z − w < 0

29

Difference Logic Example

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w− x = 2 ∧ z−w < 0

x− y = 5 x− y ≤ 5 ∧ y − x ≤ −5

z − y ≥ 2 y − z ≤ −2

z − x > 2 ⇒ x− z ≤ −3

w − x = 2 w − x ≤ 2 ∧ x− w ≤ −2

z − w < 0 z − w ≤ −1

30

Difference Logic Example

−3

−2

−12

−2

5

−5

31

32

Suggested Readings

1. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:
From an abstract Davis-Putnam-Logemann- Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937-977, 2006.

2. R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean
Modeling and Computation 3:141-224, 2007.

3. S. Krstić and A. Goel. Architecting Solvers for SAT Modulo Theories: Nelson-Oppen
with DPLL. In Proceeding of the Symposium on Frontiers of Combining Systems
(FroCoS’07). Volume 4720 of LNCS. Springer, 2007.

4. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo Theories. In
Handbook of Satisfiability. IOS Press, 2009.

32

References

[ABC+02] Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Korniłowicz, and Roberto Sebastiani.

A SAT-based approach for solving formulas over boolean and linear mathematical propositions.
In Andrei Voronkov, editor, Proceedings of the 18th International Conference on Automated
Deduction, volume 2392 of Lecture Notes in Artificial Intelligence, pages 195–210. Springer, 2002

[ACG00] Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. SAT-based procedures for temporal
reasoning.
In S. Biundo and M. Fox, editors, Proceedings of the 5th European Conference on Planning (Durham,
UK), volume 1809 of Lecture Notes in Computer Science, pages 97–108. Springer, 2000

[AMP06] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded model checking of software
using SMT solvers instead of SAT solvers.
In Proceedings of the 13th International SPIN Workshop on Model Checking of Software (SPIN’06),
volume 3925 of Lecture Notes in Computer Science, pages 146–162. Springer, 2006

[Bar02] Clark W. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations of First-Order
Theories.
PhD dissertation, Department of Computer Science, Stanford University, Stanford, CA, Sep 2002

33

References

[BB09] R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays.
In S. Kowalewski and A. Philippou, editors, 15th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’05, volume 5505 of Lecture Notes in Computer
Science, pages 174–177. Springer, 2009

[BBC+05a] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R. Sebastiani. An
incremental and layered procedure for the satisfiability of linear arithmetic logic.
In Tools and Algorithms for the Construction and Analysis of Systems, 11th Int. Conf., (TACAS),
volume 3440 of Lecture Notes in Computer Science, pages 317–333, 2005

[BBC+05b] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Silvio Ranise, Roberto

Sebastiani, and Peter van Rossu. Efficient satisfiability modulo theories via delayed theory
combination.
In K.Etessami and S. Rajamani, editors, Proceedings of the 17th International Conference on
Computer Aided Verification, volume 3576 of Lecture Notes in Computer Science, pages 335–349.
Springer, 2005

34

References

[BCF+07] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, Ziyad Hanna, Alexander

Nadel, Amit Palti, and Roberto Sebastiani. A lazy and layered SMT(BV) solver for hard industrial
verification problems.
In Werner Damm and Holger Hermanns, editors, Proceedings of the 19th International Conference
on Computer Aided Verification, volume 4590 of Lecture Notes in Computer Science, pages 547–560.
Springer-Verlag, July 2007

[BCLZ04] Thomas Ball, Byron Cook, Shuvendu K. Lahiri, and Lintao Zhang. Zapato: Automatic theorem
proving for predicate abstraction refinement.
In R. Alur and D. Peled, editors, Proceedings of the 16th International Conference on Computer Aided
Verification, volume 3114 of Lecture Notes in Computer Science, pages 457–461. Springer, 2004

[BD94] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor control.
In Procs. 6th Int. Conf. Computer Aided Verification (CAV), LNCS 818, pages 68–80, 1994

[BDS02] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of first-order formulas by
incremental translation to SAT.
In J. C. Godskesen, editor, Proceedings of the International Conference on Computer-Aided
Verification, Lecture Notes in Computer Science, 2002

35

References

[BGV01] R. E. Bryant, S. M. German, and M. N. Velev. Processor Verification Using Efficient Reductions of
the Logic of Uninterpreted Functions to Propositional Logic.
ACM Transactions on Computational Logic, TOCL, 2(1):93–134, 2001

[BLNM+09] C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodríguez-Carbonell, and A. Rubio. Solving
Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic.
In R. A. Schmidt, editor, 22nd International Conference on Automated Deduction , CADE-22, volume
5663 of Lecture Notes in Computer Science, pages 294–305. Springer, 2009

[BLS02] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Deciding CLU logic formulas via
boolean and pseudo-boolean encodings.
In Proc. Intl. Workshop on Constraints in Formal Verification, 2002

[BNO+08a] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. A Write-Based
Solver for SAT Modulo the Theory of Arrays.
In Formal Methods in Computer-Aided Design, FMCAD, pages 1–8, 2008

[BNO+08b] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert Rubio.

The Barcelogic SMT solver.
In Computer-aided Verification (CAV), volume 5123 of Lecture Notes in Computer Science, pages
294–298. Springer, 2008

36

References

[BNOT06] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting on demand in sat
modulo theories.
In M. Hermann and A. Voronkov, editors, Proceedings of the 13th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning (LPAR’06), Phnom Penh, Cambodia, volume
4246 of Lecture Notes in Computer Science, pages 512–526. Springer, 2006

[BV02] R. E. Bryant and M. N. Velev. Boolean Satisfiability with Transitivity Constraints.
ACM Transactions on Computational Logic, TOCL, 3(4):604–627, 2002

[CKSY04] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Predicate abstraction of
ANSI–C programs using SAT.
Formal Methods in System Design (FMSD), 25:105–127, September–November 2004

[CM06] S. Cotton and O. Maler. Fast and Flexible Difference Constraint Propagation for DPLL(T).
In A. Biere and C. P. Gomes, editors, 9th International Conference on Theory and Applications of
Satisfiability Testing, SAT’06, volume 4121 of Lecture Notes in Computer Science, pages 170–183.
Springer, 2006

37

References

[DdM06] Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver for DPLL(T).
In T. Ball and R. B. Jones, editors, 18th International Conference on Computer Aided Verification,
CAV’06, volume 4144 of Lecture Notes in Computer Science, pages 81–94. Springer, 2006

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, July 1962

[dMB09] L. de Moura and N. Bjørner. Generalized, efficient array decision procedures.
In 9th International Conference on Formal Methods in Computer-Aided Design, FMCAD 2009, pages
45–52. IEEE, 2009

[dMR02] L. de Moura and H. Rueß. Lemmas on Demand for Satisfiability Solvers.
In 5th International Conference on Theory and Applications of Satisfiability Testing, SAT’02, pages
244–251, 2002

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, July 1960

[FLL+02] C. Flanagan, K. R. M Leino, M. Lillibridge, G. Nelson, and J. B. Saxe. Extended static checking for
Java.
In Proc. ACM Conference on Programming Language Design and Implementation, pages 234–245,
June 2002

38

References

[GHN+04] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.

DPLL(T): Fast decision procedures.
In R. Alur and D. Peled, editors, Proceedings of the 16th International Conference on Computer
Aided Verification, CAV’04 (Boston, Massachusetts), volume 3114 of Lecture Notes in Computer
Science, pages 175–188. Springer, 2004

[HBJ+14] Liana Hadarean, Clark Barrett, Dejan Jovanović, Cesare Tinelli, and Kshitij Bansal. A tale of two
solvers: Eager and lazy approaches to bit-vectors.
In Armin Biere and Roderick Bloem, editors, Proceedings of the 26th International Conference on
Computer Aided Verification (CAV ’14), volume 8559 of Lecture Notes in Computer Science, pages
680–695. Springer, July 2014

[HT08] George Hagen and Cesare Tinelli. Scaling up the formal verification of Lustre programs with
SMT-based techniques.
In A. Cimatti and R. Jones, editors, Proceedings of the 8th International Conference on Formal
Methods in Computer-Aided Design (FMCAV’08), Portland, Oregon, pages 109–117. IEEE, 2008

[JdM12] Dejan Jovanović and Leonardo de Moura. Solving Non-linear Arithmetic.
In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, 6th International Joint Conference on
Automated Reasoning (IJCAR ’12), volume 7364 of Lecture Notes in Computer Science, pages
339–354. Springer, 2012

[JB10] Dejan Jovanović and Clark Barrett. Polite theories revisited.
In Chris Fermüller and Andrei Voronkov, editors, Proceedings of the 17th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, volume 6397 of Lecture Notes in
Computer Science, pages 402–416. Springer-Verlag, 2010

[KG07] Sava Krstić and Amit Goel. Architecting solvers for SAT modulo theories: Nelson-Oppen with DPLL.

In B. Konev and F. Wolter, editors, Proceeding of the Symposium on Frontiers of Combining Systems
(Liverpool, England), volume 4720 of Lecture Notes in Computer Science, pages 1–27. Springer, 2007 39

References

[LM05] Shuvendu K. Lahiri and Madanlal Musuvathi. An Efficient Decision Procedure for UTVPI
Constraints.
In B. Gramlich, editor, 5th International Workshop on Frontiers of Combining Systems, FroCos’05,
volume 3717 of Lecture Notes in Computer Science, pages 168–183. Springer, 2005

[LNO06] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for Fast Predicate Abstraction.
In T. Ball and R. B. Jones, editors, 18th International Conference on Computer Aided Verification,
CAV’06, volume 4144 of Lecture Notes in Computer Science, pages 413–426. Springer, 2006

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245–257, October 1979

[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure.
Journal of the ACM, 27(2):356–364, 1980

[NO05] Robert Nieuwenhuis and Albert Oliveras. DPLL(T) with Exhaustive Theory Propagation and its
Application to Difference Logic.
In Kousha Etessami and Sriram K. Rajamani, editors, Proceedings of the 17th International
Conference on Computer Aided Verification, CAV’05 (Edimburgh, Scotland), volume 3576 of Lecture
Notes in Computer Science, pages 321–334. Springer, July 2005

40

References

[NO07] R. Nieuwenhuis and A. Oliveras. Fast Congruence Closure and Extensions.
Information and Computation, IC, 2005(4):557–580, 2007

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories:
from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, November 2006

[Opp80] Derek C. Oppen. Complexity, convexity and combinations of theories.
Theoretical Computer Science, 12:291–302, 1980

[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding Equality Formulas by Small Domains
Instantiations.
In N. Halbwachs and D. Peled, editors, 11th International Conference on Computer Aided
Verification, CAV’99, volume 1633 of Lecture Notes in Computer Science, pages 455–469. Springer,
1999

[Rin96] Christophe Ringeissen. Cooperation of decision procedures for the satisfiability problem.
In F. Baader and K.U. Schulz, editors, Frontiers of Combining Systems: Proceedings of the 1st
International Workshop, Munich (Germany), Applied Logic, pages 121–140. Kluwer Academic
Publishers, March 1996

41

References

[RRZ05] Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Combining data structures with
nonstably infinite theories using many-sorted logic.
In B. Gramlich, editor, Proceedings of the Workshop on Frontiers of Combining Systems, volume
3717 of Lecture Notes in Computer Science, pages 48–64. Springer, 2005

[SBDL01] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A Decision Procedure for an Extensional Theory
of Arrays.
In 16th Annual IEEE Symposium on Logic in Computer Science, LICS’01, pages 29–37. IEEE
Computer Society, 2001

[Sha02] Natarajan Shankar. Little engines of proof.
In Lars-Henrik Eriksson and Peter A. Lindsay, editors, FME 2002: Formal Methods - Getting IT
Right, Proceedings of the International Symposium of Formal Methods Europe (Copenhagen,
Denmark), volume 2391 of Lecture Notes in Computer Science, pages 1–20. Springer, July 2002

[SLB03] Sanjit A. Seshia, Shuvendu K. Lahiri, and Randal E. Bryant. A hybrid SAT-based decision procedure
for separation logic with uninterpreted functions.
In Proc. 40th Design Automation Conference, pages 425–430. ACM Press, 2003

[SSB02] O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding Separation Formulas with SAT.
In E. Brinksma and K. G. Larsen, editors, 14th International Conference on Computer Aided
Verification, CAV’02, volume 2404 of Lecture Notes in Computer Science, pages 209–222. Springer,
2002

42

References

[TdH08] N. Tillmann and J. de Halleux. Pex-White Box Test Generation for .NET.
In B. Beckert and R. Hähnle, editors, 2nd International Conference on Tests and Proofs, TAP’08,
volume 4966 of Lecture Notes in Computer Science, pages 134–153. Springer, 2008

[TH96] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson–Oppen combination
procedure.
In F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems: Proceedings of the 1st
International Workshop (Munich, Germany), Applied Logic, pages 103–120. Kluwer Academic
Publishers, March 1996

[Tin02] C. Tinelli. A DPLL-based calculus for ground satisfiability modulo theories.
In G. Ianni and S. Flesca, editors, Proceedings of the 8th European Conference on Logics in Artificial
Intelligence (Cosenza, Italy), volume 2424 of Lecture Notes in Artificial Intelligence. Springer, 2002

[TZ05] Cesare Tinelli and Calogero Zarba. Combining nonstably infinite theories.
Journal of Automated Reasoning, 34(3):209–238, April 2005

43

References

[WIGG05] C. Wang, F. Ivancic, M. K. Ganai, and A. Gupta. Deciding Separation Logic Formulae by SAT and
Incremental Negative Cycle Elimination.
In G. Sutcliffe and A. Voronkov, editors, 12h International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, LPAR’05, volume 3835 of Lecture Notes in Computer Science,
pages 322–336. Springer, 2005

[ZM10] Harald Zankl and Aart Middeldorp. Satisfiability of Non-linear (Ir)rational Arithmetic.
In Edmund M. Clarke and Andrei Voronkov, editors, 16th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, LPAR’10, volume 6355 of Lecture Notes in
Computer Science, pages 481–500. Springer, 2010

44

	Combining Theories
	Theory Solvers

