CS 357: Advanced Topics in Formal Methods Fall 2019

Lecture 9

Aleksandar Zeljić (materials by Clark Barrett) Stanford University

We define a *theory* as a set of first-order sentences *closed under logical implication*.

Thus, T is a theory iff T is a set of sentences and if $T \models \sigma$, then $\sigma \in T$ for every sentence σ .

Examples

- ► For a given signature, the smallest possible theory consists of exactly the valid sentences over that signature.
- ► The largest theory for a given signature is the set of all sentences. It is the only unsatisfiable theory. Why?

For a class $\mathcal K$ of models over a given signature Σ , define the *theory of* $\mathcal K$ as $\mathit{Th}\,\mathcal K = \{\sigma \mid \sigma \text{ is a }\Sigma\text{-sentence which is true in every model in }\mathcal K\}.$

Theorem

 $Th \mathcal{K}$ is indeed a theory.

Proof

Suppose $Th\mathcal{K}\models\sigma$. We know that $\models_M Th\mathcal{K}$ for each M in \mathcal{K} . It follows that $\models_M \sigma$ for each M in \mathcal{K} , and thus $\sigma\in Th\mathcal{K}$.

Suppose Γ is a set of sentences.

Define the set $Cn \ \Gamma$ of *consequences* of Γ to be $\{\sigma \mid \Gamma \models \sigma\}$.

Then $Cn \Gamma = Th Mod \Gamma$.

A theory T is *complete* iff for every sentence σ , either $\sigma \in T$ or $(\neg \sigma) \in T$.

Note that if M is a model, then Th $\{M\}$ is complete. In fact, for a class $\mathcal K$ of models, $Th\mathcal K$ is complete iff any two members of $\mathcal K$ are elementarily equivalent.

A theory T is axiomatizable iff there is a decidable set Γ of sentences such that T=Cn Γ .

A theory T is *finitely axiomatizable* iff $T = Cn \Gamma$ for some finite set Γ of sentences.

Theorem

If Cn Γ is finitely axiomatizable, then there is a finite $\Gamma_0 \subseteq \Gamma$ such that Cn $\Gamma_0 = Cn$ Γ .

Proof

If Cn Γ is finitely axiomatizable, then for some sentence τ , Cn $\Gamma = Cn$ τ . Clearly, $\Gamma \models \tau$. By compactness, we have that there exists $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \models \tau$. Thus, Cn $\tau \subseteq Cn$ $\Gamma_0 \subseteq Cn$ Γ , and since Cn $\Gamma = Cn$ τ , it follows that Cn $\Gamma_0 = Cn$ Γ .

Using the above terminology, we can restate our earlier results as follows:

- An axiomatizable theory (in a reasonable language) is effectively enumerable
- A complete axiomatizable theory (in a reasonable language) is decidable.

Our results about theories can be summarized in the following diagram.

Los-Vaught Test

For a theory T and a cardinal λ , say that T is λ -categorical iff all models of T having cardinality λ are isomorphic.

Theorem

Let T be a theory in a countable language such that

- ightharpoonup T is λ -categorical for some infinite cardinal λ .
- ▶ All models of *T* are infinite.

Then T is complete.

Proof

It suffices to show that for any two models M and M' of T, $M \equiv M'$. Since M and M' are infinite, there exist (by **LST**) elementarily equivalent models of cardinality λ . But these models must be isomorphic, and by the homomorphism theorem, isomorphic models are elementarily equivalent.

Validity and Satisfiability Modulo Theories

Given a Σ -theory T, a Σ -formula ϕ is

- 1. T-valid if $\models_M \phi[s]$ for all models M of T and all variable assignments s.
- 2. *T-satisfiable* if there exists some model M of T and variable assignment s such that $\models_M \phi[s]$.
- 3. T-unsatisfiable if $\not\models_M \phi[s]$ for all models M of T and all variable assignments s.

The *validity problem* for T is the problem of deciding, for each Σ -formula ϕ , whether ϕ is T-valid.

The *satisfiability problem* for T is the problem of deciding, for each Σ -formula ϕ , whether ϕ is T-satisfiable.

Similarly, one can define the *quantifier-free validity problem* and the *quantifier-free satisfiability problem* for a Σ -theory T by restricting the formula ϕ to be quantifier-free.

Validity and Satisfiability Modulo Theories

A decision problem is *decidable* if there exists an effective procedure which always terminates with an answer for any given instance of the problem.

For example, the validity problem for a Σ -theory \mathcal{T} is decidable if there exists an effective procedure for determining whether $\mathcal{T} \models \phi$ for every Σ -formula ϕ .

Note that validity problems can always be reduced to satisfiability problems:

 ϕ is T-valid iff $\neg \phi$ is T-unsatisfiable.

We will consider a few examples of theories which are of particular interest in verification applications.

The Theory $T_{\mathcal{E}}$ of Equality

The theory $T_{\mathcal{E}}$ of equality is the theory $Cn \emptyset$.

Note that the exact set of sentences in $T_{\mathcal{E}}$ depends on the signature in question.

The theory does not restrict the possible values of symbols in any way. For this reason, it is sometimes called the theory of *equality with uninterpreted* functions (EUF).

The satisfiability problem for $T_{\mathcal{E}}$ is just the satisfiability problem for first order logic, which is undecidable.

The satisfiability problem for conjunctions of literals in $T_{\mathcal{E}}$ is decidable in polynomial time using *congruence closure*.

The Theory $T_{\mathcal{Z}}$ of Integers

Let $\Sigma_{\mathcal{Z}}$ be the signature $(0,1,+,-,\leq)$.

Let $A_{\mathcal{Z}}$ be the standard model of the integers with domain \mathcal{Z} .

Then $T_{\mathcal{Z}}$ is defined to be $Th \mathcal{A}_{\mathcal{Z}}$.

As showed by Presburger in 1929, the validity problem for T_Z is decidable, but its complexity is triply-exponential.

The quantifier-free satisfiability problem for T_Z is "only" NP-complete.

Let $\Sigma_{\mathcal{Z}}^{\times}$ be the same as $\Sigma_{\mathcal{Z}}$ with the addition of the symbol \times for multiplication, and define $\mathcal{A}_{\mathcal{Z}}^{\times}$ and $\mathcal{T}_{\mathcal{Z}}^{\times}$ in the obvious way.

The satisfiability problem for T_Z^{\times} is undecidable (a consequence of Gödel's incompleteness theorem).

In fact, even the quantifier-free satisfiability problem for T_Z^{\times} is undecidable.

The Theory $T_{\mathcal{R}}$ of Reals

Let $\Sigma_{\mathcal{R}}$ be the signature $(0, 1, +, -, \leq)$.

Let $A_{\mathcal{R}}$ be the standard model of the reals with domain \mathcal{R} .

Then $T_{\mathcal{R}}$ is defined to be $Th \mathcal{A}_{\mathcal{R}}$.

The satisfiability problem for $\mathcal{T}_{\mathcal{R}}$ is decidable, but the complexity is doubly-exponential.

The quantifier-free satisfiability problem for conjunctions of literals (atomic formulas or their negations) in $\mathcal{T}_{\mathcal{R}}$ is solvable in polynomial time, though exponential methods (like Simplex or Fourier-Motzkin) often perform better in practice.

Let $\Sigma^{\times}_{\mathcal{R}}$ be the same as $\Sigma_{\mathcal{R}}$ with the addition of the symbol \times for multiplication, and define $\mathcal{A}^{\times}_{\mathcal{R}}$ and $\mathcal{T}^{\times}_{\mathcal{R}}$ in the obvious way.

In contrast to the theory of integers, the satisfiability problem for $\mathcal{T}_{\mathcal{R}}^{\times}$ is decidable.

The Theory T_A of Arrays

Let Σ_A be the signature (read, write).

Let Λ_A be the following axioms:

$$\forall a \forall i \forall v \ (read(write(a, i, v), i) = v)$$

 $\forall a \forall i \forall j \forall v \ (i \neq j \rightarrow read(write(a, i, v), j) = read(a, j))$
 $\forall a \forall b \ ((\forall i \ (read(a, i) = read(b, i))) \rightarrow a = b)$

Then $T_A = Cn \Lambda_A$.

The satisfiability problem for T_A is undecidable, but the quantifier-free satisfiability problem for T_A is decidable (the problem is NP-complete).

Theories of Inductive Data Types

An *inductive data type* (IDT) defines one or more *constructors*, and possibly also *selectors* and *testers*.

Example: *list* of *int*

► Constructors: *cons* : (*int*, *list*) → *list*, *null* : *list*

▶ Selectors: $car : list \rightarrow int, cdr : list \rightarrow list$

► Testers: *is_cons*, *is_null*

The *first order theory* of a inductive data type associates a function symbol with each constructor and selector and a predicate symbol with each tester.

```
Example: \forall x : list. (x = null \lor \exists y : int, z : list. x = cons(y, z))
```

For IDTs with a single constructor, a conjunction of literals is decidable in polynomial time.

For more general IDTs, the problem is NP-complete, but reasonbly efficient algorithms exist in practice.

Other Interesting Theories

Some other interesting theories include:

- Theory of bit-vectors
- ► Fragments of set theory
- ► Theory of floating-point arithmetic
- ► Theory of strings

SMT-LIB standard supports many different theories: http://smtlib.cs.uiowa.edu/logics.shtml