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Theories

We define a theory as a set of first-order sentences closed under logical
implication.

Thus, T is a theory iff T is a set of sentences and if T |= σ, then σ ∈ T for
every sentence σ.

Examples

I For a given signature, the smallest possible theory consists of exactly the
valid sentences over that signature.

I The largest theory for a given signature is the set of all sentences. It is the
only unsatisfiable theory. Why?



Theories

For a class K of models over a given signature Σ, define the theory of K as

ThK = {σ | σ is a Σ-sentence which is true in every model in K}.

Theorem

ThK is indeed a theory.

Proof

Suppose ThK |= σ. We know that |=M ThK for each M in K. It follows that
|=M σ for each M in K, and thus σ ∈ ThK.
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Suppose Γ is a set of sentences.

Define the set Cn Γ of consequences of Γ to be {σ | Γ |= σ}.

Then Cn Γ = Th Mod Γ.



Theories

A theory T is complete iff for every sentence σ, either σ ∈ T or (¬σ) ∈ T .

Note that if M is a model, then Th {M} is complete. In fact, for a class K of
models, ThK is complete iff any two members of K are elementarily equivalent.

A theory T is axiomatizable iff there is a decidable set Γ of sentences such that
T = Cn Γ.

A theory T is finitely axiomatizable iff T = Cn Γ for some finite set Γ of
sentences.

Theorem

If Cn Γ is finitely axiomatizable, then there is a finite Γ0 ⊆ Γ such that
Cn Γ0 = Cn Γ.

Proof

If Cn Γ is finitely axiomatizable, then for some sentence τ , Cn Γ = Cn τ .
Clearly, Γ |= τ . By compactness, we have that there exists Γ0 ⊆ Γ such that
Γ0 |= τ . Thus, Cn τ ⊆ Cn Γ0 ⊆ Cn Γ, and since Cn Γ = Cn τ , it follows that
Cn Γ0 = Cn Γ.
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Theories

Using the above terminology, we can restate our earlier results as follows:

I An axiomatizable theory (in a reasonable language) is effectively
enumerable.

I A complete axiomatizable theory (in a reasonable language) is decidable.

Our results about theories can be summarized in the following diagram.

Decidable

Effectively Enumerable Axiomatizable

Finitely Axiomatizable
if complete



Los-Vaught Test

For a theory T and a cardinal λ, say that T is λ-categorical iff all models of T
having cardinality λ are isomorphic.

Theorem

Let T be a theory in a countable language such that

I T is λ-categorical for some infinite cardinal λ.

I All models of T are infinite.

Then T is complete.

Proof

It suffices to show that for any two models M and M ′ of T , M ≡ M ′. Since M
and M ′ are infinite, there exist (by LST) elementarily equivalent models of
cardinality λ. But these models must be isomorphic, and by the
homomorphism theorem, isomorphic models are elementarily equivalent.
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Validity and Satisfiability Modulo Theories

Given a Σ-theory T , a Σ-formula φ is

1. T-valid if |=M φ[s] for all models M of T and all variable assignments s.

2. T-satisfiable if there exists some model M of T and variable assignment s
such that |=M φ[s].

3. T-unsatisfiable if 6|=M φ[s] for all models M of T and all variable
assignments s.

The validity problem for T is the problem of deciding, for each Σ-formula φ,
whether φ is T -valid.

The satisfiability problem for T is the problem of deciding, for each Σ-formula
φ, whether φ is T -satisfiable.

Similarly, one can define the quantifier-free validity problem and the
quantifier-free satisfiability problem for a Σ-theory T by restricting the formula
φ to be quantifier-free.



Validity and Satisfiability Modulo Theories

A decision problem is decidable if there exists an effective procedure which
always terminates with an answer for any given instance of the problem.

For example, the validity problem for a Σ-theory T is decidable if there exists
an effective procedure for determining whether T |= φ for every Σ-formula φ.

Note that validity problems can always be reduced to satisfiability problems:

φ is T -valid iff ¬φ is T -unsatisfiable.

We will consider a few examples of theories which are of particular interest in
verification applications.



The Theory TE of Equality

The theory TE of equality is the theory Cn ∅.

Note that the exact set of sentences in TE depends on the signature in
question.

The theory does not restrict the possible values of symbols in any way. For this
reason, it is sometimes called the theory of equality with uninterpreted
functions (EUF).

The satisfiability problem for TE is just the satisfiability problem for first order
logic, which is undecidable.

The satisfiability problem for conjunctions of literals in TE is decidable in
polynomial time using congruence closure.



The Theory TZ of Integers

Let ΣZ be the signature (0, 1,+,−,≤).

Let AZ be the standard model of the integers with domain Z.

Then TZ is defined to be ThAZ .

As showed by Presburger in 1929, the validity problem for TZ is decidable, but
its complexity is triply-exponential.

The quantifier-free satisfiability problem for TZ is “only” NP-complete.

Let Σ×Z be the same as ΣZ with the addition of the symbol × for
multiplication, and define A×Z and T×Z in the obvious way.

The satisfiability problem for T×Z is undecidable (a consequence of Gödel’s
incompleteness theorem).

In fact, even the quantifier-free satisfiability problem for T×Z is undecidable.



The Theory TR of Reals

Let ΣR be the signature (0, 1,+,−,≤).

Let AR be the standard model of the reals with domain R.

Then TR is defined to be ThAR.

The satisfiability problem for TR is decidable, but the complexity is
doubly-exponential.

The quantifier-free satisfiability problem for conjunctions of literals (atomic
formulas or their negations) in TR is solvable in polynomial time, though
exponential methods (like Simplex or Fourier-Motzkin) often perform better in
practice.

Let Σ×R be the same as ΣR with the addition of the symbol × for
multiplication, and define A×R and T×R in the obvious way.

In contrast to the theory of integers, the satisfiability problem for T×R is
decidable.



The Theory TA of Arrays

Let ΣA be the signature (read ,write ).

Let ΛA be the following axioms:

∀ a ∀ i ∀ v (read (write (a, i , v), i) = v)
∀ a ∀ i ∀ j ∀ v (i 6= j → read (write (a, i , v), j) = read (a, j))
∀ a ∀ b ((∀ i (read (a, i) = read (b, i)))→ a = b)

Then TA = Cn ΛA.

The satisfiability problem for TA is undecidable, but the quantifier-free
satisfiability problem for TA is decidable (the problem is NP-complete).



Theories of Inductive Data Types

An inductive data type (IDT) defines one or more constructors, and possibly
also selectors and testers.

Example: list of int

I Constructors: cons : (int, list)→ list, null : list

I Selectors: car : list→ int, cdr : list→ list

I Testers: is cons, is null

The first order theory of a inductive data type associates a function symbol
with each constructor and selector and a predicate symbol with each tester.

Example: ∀ x : list. (x = null ∨ ∃ y : int, z : list. x = cons(y , z))

For IDTs with a single constructor, a conjunction of literals is decidable in
polynomial time.

For more general IDTs, the problem is NP-complete, but reasonbly efficient
algorithms exist in practice.



Other Interesting Theories

Some other interesting theories include:

I Theory of bit-vectors

I Fragments of set theory

I Theory of floating-point arithmetic

I Theory of strings

SMT-LIB standard supports many different theories:
http://smtlib.cs.uiowa.edu/logics.shtml

http://smtlib.cs.uiowa.edu/logics.shtml

